
Клиентский
программный интерфейс

Москва 2026

Клиентский программный интерфейс 27.01.2026

2

Содержание
1. Быстрое знакомство . 4

1.1. Установка и подготовка к использованию . 4
1.1.1. Состав и установка ПО в среде Linux . 5

1.1.1.1. Установка из zip-архива . 5
1.1.1.2. Установка из deb-пакета или rpm-пакета . 6

1.2. Основные объекты . 7
1.3. Общие сведения по работе с основными объектами Cgate . 8
1.4. Работа с соединением . 8
1.5. Получение потоков репликации . 10
1.6. Работа со схемами данных . 13

1.6.1. Политика использования схем данных . 20
1.7. Отправка транзакций и получение ответов . 21
1.8. Сценарий работы с p2sys . 23
1.9. Объекты протокола изменения пароля . 24

1.9.1. Публикатор p2mqpwd . 24
1.9.2. Подписчик p2mqpwdreply . 24

2. Описание API . 25
2.1. Общие соглашения . 25
2.2. Жизненный цикл объектов . 25
2.3. Использование в многопоточном окружении . 26
2.4. Запуск и остановка окружения . 26

2.4.1. Настройка логов p2 . 27
2.5. Соединение . 28

2.5.1. cg_conn_new . 28
2.5.2. cg_conn_open . 29
2.5.3. cg_conn_close . 30
2.5.4. cg_conn_destroy . 31
2.5.5. cg_conn_process . 31
2.5.6. cg_conn_getstate . 32

2.6. Подписчик . 32
2.6.1. cg_lsn_new . 33
2.6.2. cg_lsn_open . 35
2.6.3. cg_lsn_close . 37
2.6.4. cg_lsn_destroy . 37
2.6.5. cg_lsn_getstate . 38
2.6.6. cg_lsn_getscheme . 38

2.7. Публикатор . 39
2.7.1. cg_pub_new . 39
2.7.2. cg_pub_open . 40
2.7.3. cg_pub_close . 40
2.7.4. cg_pub_destroy . 41
2.7.5. cg_pub_getstate . 41
2.7.6. cg_pub_getscheme . 42
2.7.7. cg_pub_msgnew . 42
2.7.8. cg_pub_post . 44
2.7.9. cg_pub_msgfree . 44

2.8. Логирование . 45
2.8.1. cg_log_trace . 45
2.8.2. cg_log_debug . 45
2.8.3. cg_log_info . 45
2.8.4. cg_log_error . 46
2.8.5. cg_log_tracestr . 46
2.8.6. cg_log_debugstr . 46
2.8.7. cg_log_infostr . 47
2.8.8. cg_log_errorstr . 47

2.9. Объекты протокола p2sys . 47
2.9.1. Соединение p2sys . 47
2.9.2. Подписчик p2sys . 48
2.9.3. Публикатор p2sys . 48

2.10. Вспомогательные функции . 48
2.10.1. cg_bcd_get . 48
2.10.2. cg_getstr . 49
2.10.3. cg_msg_dump . 50

3. Описание инструментария . 51
3.1. Утилита schemetool . 51

3.1.1. makesrc - генерация структур . 51
3.2. Утилита change_password . 53

4. Описание API для Java, .NET . 54
4.1. Описание . 54

Клиентский программный интерфейс 27.01.2026

3

4.1.1. API CGate для Java . 54
4.1.2. API CGate для .NET . 54

4.2. Объект Cgate . 55
4.3. Объект Connection . 55

4.3.1. Конструктор Connection . 55
4.3.2. Метод Connection.dispose . 55
4.3.3. Метод Connection.open . 55
4.3.4. Метод Connection.close . 56
4.3.5. Метод Connection.process . 56
4.3.6. Свойство Connection.state . 56

4.4. Объект Listener . 57
4.4.1. Конструктор Listener . 57
4.4.2. Метод Listener.dispose . 57
4.4.3. Метод Listener.open . 58
4.4.4. Метод Listener.close . 58
4.4.5. Свойство Listener.State . 58
4.4.6. Свойство Listener.Scheme . 58
4.4.7. Свойство Listener.Handler . 59

4.5. Объект Publisher . 59
4.5.1. Конструктор Publisher . 60
4.5.2. Метод Publisher.dispose . 60
4.5.3. Метод Publisher.open . 60
4.5.4. Метод Publisher.close . 60
4.5.5. Свойство Publisher.State . 60
4.5.6. Свойство Publisher.Scheme . 61
4.5.7. Метод Publisher.newMessage . 61
4.5.8. Метод Publisher.post . 62

4.6. Объект Message . 62
4.6.1. Метод Message.dispose . 62
4.6.2. Свойство Message.Type . 62
4.6.3. Свойство Message.Data . 63
4.6.4. Метод Message.toString . 63
4.6.5. Типы сообщений . 63

4.6.5.1. Объект OpenMessage . 63
4.6.5.2. Объект CloseMessage . 63
4.6.5.3. Объект DataMessage . 63
4.6.5.4. Объект StreamDataMessage . 64
4.6.5.5. Объект TnBeginMessage . 64
4.6.5.6. Объект TnCommitMessage . 64
4.6.5.7. Объект P2MQTimeoutMessage . 64
4.6.5.8. Объект P2ReplLifeNumMessage . 64
4.6.5.9. Объект P2ReplClearDeletedMessage . 64
4.6.5.10. Объект P2ReplOnlineMessage . 65
4.6.5.11. Объект P2ReplStateMessage . 65

Клиентский программный интерфейс 27.01.2026

4

1. Быстрое знакомство
1.1. Установка и подготовка к использованию

Библиотека P2 CGate представляет собой набор следующих компонент:

• системные библиотеки Plaza-2

• маршрутизатор сообщений P2MQRouter

• шлюзовая библиотека cgate

• заголовочный файл с описанием API - cgate.h

Все эти компоненты необходимы для разработки с использованием библиотеки P2 CGate.

Для того, чтобы начать разработку, требуется установить компоненты инсталлятором, соответствующим используемой Вами опе-
рационной системе. В зависимости от операционной системы библиотеки и заголовочный файл будут установлены либо в стан-
дартные предназначенные для этого места, либо в место, указанное при установке. В ходе дальнейших инструкций каталог уста-
новки будет обозначаться как C:\Moscow Exchange\SpectraCGate (В ОС семейства Windows при инсталляции будет создана си-
стемная переменная окружения с именем CGATE_HOME, значением которой является путь установки CGate).

Важно
Для работы с библиотекой необходимо наличие логина в систему Plaza-2 и ключа приложения. Для разработки исполь-
зуются логины в тестовую систему Plaza-2 и тестовые ключи, которые могут быть использованы всеми разработчиками
произвольно. Для production используются production-логины и ключи. Production-ключи могут быть получены путём про-
хождения процедуры сертификации.

Для проверки корректности установки и готовности к разработке можно выполнить тестовую сборку примеров и их исполнение.
Для этого надо выполнить следующие шаги:

1. Настройка маршрутизатора Plaza-2 в соответствии с имеющимся логином (в случае использования интерактивного инсталля-
тора данное действие выполняется автоматически)

Необходимо открыть файл настройки роутера P2MQRouter, который, как правило, называется client_router.ini и в секции [AS:NS]
заполнить логин и пароль:

[AS:NS]
USERNAME=<your login>
PASSWORD=<your password>

2. Сборка примеров

Примеры располагаются в каталоге C:\Moscow Exchange\SpectraCGate\SDK\samples для платформы Windows или в каталоге /
usr/share/doc/cgate-examples (/opt/moex/cgate/samples) для Linux. Сборка примеров выполняется запуском сборочных скриптов,
которые различаются в зависимости от используемой платформы и языка программирования. Для ОС Linux рекомендуется
сделать копию примеров в своём домашнем каталоге и собирать их оттуда.

3. Исполнение примеров

Для исполнения примеров необходимо убедиться, что роутер P2MQRouter запущен и соединен с сетью Plaza-2 (анализом со-
общений роутера), в доступности библиотек Plaza-2 для запускаемого файла примера (возможно потребуется добавление ка-
талога SpectraCGate\bin в переменную окружения PATH или указание каталога SpectraCGate\bin в Вашей среде разработки), а
также в доступности конфигурационных файлов.

4. Описание примеров

a. Пример aggrspy

aggrspy - пример построения агрегированного стакана на покупку и продажу по фиксированному инструменту по потоку
FORTS_AGGR50_REPL. При нажатии Enter в outfile выводится срез стакана.

Команда для запуска:

aggrspy ISIN_ID depth outfile [r]

Входные аргументы:

• isin_id - id инструмента;

• depth - глубина выводимого стакана в файл (не больше 50);

• outfile - файл для печати стакана;

Клиентский программный интерфейс 27.01.2026

5

• r - включить обратное направление сортировки (параметр используется для инструментов с обратной сортировкой).

b. Пример repl

repl - получение реплики данных по потоку. Пример печатает все получаемые сообщения в log. При разрыве соединения
реплика начинается сначала. Входных аргументов нет.

c. Пример repl_resume

repl_resume - пример идентичен repl. Отличие заключается в том, что после разрыва соединения repl_resume продолжает
реплику с последнего сообщения TN_COMMIT. Входных аргументов нет.

d. Пример send

send - выставляет заявку в SPECTRA. Выводит в лог ответ торговой системы. Входных аргументов нет.

e. Пример orderbook

orderbook - пример построения агрегированного стакана на покупку и продажу по фиксированному инструменту по online
потоку FORTS_ORDLOG_REPL и снепшот потоку FORTS_USERORDERBOOK_REPL. При нажатии Enter в outfile выводится
срез стакана.

Команда для запуска:

orderbook ISIN_ID depth outfile [r]

Входные аргументы:

• isin_id - id инструмента;

• depth - глубина выводимого стакана в файл (не больше 50);

• outfile - файл для печати стакана;

• r - включить обратное направление сортировки (параметр используется для инструментов с обратной сортировкой).

f. Пример p2sys

p2sys - пример авторизации роутера из cgate. Повторяет в цикле следующие действия:

i. Посылает ошибочный набор (login, pwd), в ответ получает сообщение logon failed;

ii. После этого посылает правильный набор (login, pwd);

iii. На сообщение об успешной авторизации посылается запрос на logout;

iv. Возврат к пункту 1.

g. Пример send_mt

send_mt - многопоточный пример посылки заявки. (Примечание: компилируется только под компиляторами, поддерживающи-
ми C++11.). В треде 1 посылаются заявки. В треде 2 обрабатываются reply на посылаемые заявки.

h. Пример instruments_state

instruments_state - пример, который демонстрирует самостоятельный расчет статусов инструментов по пото-
ку FORTS_SECURITYGROUPSTATE_REPL (подробнее см. https://ftp.moex.com/pub/ClientsAPI/Spectra/CGate/prod/docs/
p2gate_ru.pdf).

1.1.1. Состав и установка ПО в среде Linux

1.1.1.1. Установка из zip-архива

Дистрибутив Cgate состоит из инсталляционого скрипта и архива, в котором находятся загружаемые модули проекта cgate и про-
екта cgate_java, файлы include, файлы документации и файлы примеров. Дистрибутив доступен для скачивания по адресу: https://
ftp.moex.com/pub/ClientsAPI/Spectra/CGate/.

Порядок установки:

1. Выполните команду (она добавит необходимые разрешения в атрибуты файла):

chmod 755 ./install.sh

2. Выполните команду:

./install.sh ./cgate_linux_amd64-7.12.0.103.zip

https://ftp.moex.com/pub/ClientsAPI/Spectra/CGate/
https://ftp.moex.com/pub/ClientsAPI/Spectra/CGate/

Клиентский программный интерфейс 27.01.2026

6

Примечание
Внимание! Имя архива привязано к версии ПО и может отличаться от имени, которое указано в примере выше.

3. В ответ на запрос: "Please, enter cgate install path:" укажите полный путь к каталогу, в который вы хотите распаковать cgate;

4. В ответ на запрос: "Please, enter P2 login:" укажите логин пользователя;

5. В ответ на запрос: "Please, enter P2 password:" укажите пароль пользователя.

1.1.1.2. Установка из deb-пакета или rpm-пакета

Порядок установки:

1. Скачайте и установите пакет шлюза с помощью команды:

dpkg -i cgate_<version>_amd64.deb

в случае установки из deb-пакета, или команды:

rpm -U cgate-<version>.x86_64.rpm

в случае установки из rpm-пакета.

<version> - номер версии дистрибутива

Таблица раскладки компонентов:

Куда ставится Описание

/opt/moex/cgate Бинарники, схемы, документация по шлюзу

/etc/opt/moex/cgate Настроечные файлы, auth.ini - файлы

/var/opt/moex/cgate Каталог логирования, трейс файлы

/usr/share/doc Copyright, документация по установке

2. Зайдите в каталог /etc/opt/moex/cgate/auth и в соответствующем ini-файле укажите логин/пароль для подключения:

• prod.ini - для подключения к production системе

• t1.ini - для подключения к полигону T1

• t0.ini - для подключения к полигону T0

• game.ini - для подключения к игровому полигону

Примечание
Обратите внимание, что в случае переустановки пакета каталог \auth и файлы с настройками подключения не удаля-
ются, поэтому повторно настраивать логин/пароль не потребуется.

3. Запустите сервис (роутер) с помощью команды:

systemctl start cgate@<profile>

<profile> - вариант подключения. В качестве профиля можно указать:

• prod - подключение к Spectra боевой контур

• rezerv - подключение к Spectra резервный контур

• t1 - подключение к полигону T1

• t0 - подключение к полигону T0

• game - подключение к игровому полигону

• rfs.prod - подключение к Spectra боевой контур с дополнительным доступом к RFS

• rfs.rezerv - подключение к Spectra резервный контур с дополнительным доступом к RFS

• rfs.t1 - подключение к полигону T1 с дополнительным доступом к RFS

• rfs.t0 - подключение к полигону T0 с дополнительным доступом к RFS

Клиентский программный интерфейс 27.01.2026

7

Примечание
Обратите внимание, что при апгрейде пакета запущенный сервис останавливается, поэтому после обновления сервис
нужно запустить заново.

Код примеров С++ находится в каталоге /opt/moex/cgate/samples/c. Для сборки нужно запустить скрипт:

/opt/moex/cgate/samples/c/build_c_samples.sh

Результаты сборки будут в текущем каталоге.

Код примеров Java находится в каталоге /opt/moex/cgate/samples/java/basic. Скрипт сборки:

/opt/moex/cgate/samples/java/basic/build_samples.sh

Результаты сборки будут в текущем каталоге.

Для запуска какого-либо примера нужно из каталога сборки вызвать команду:

/opt/moex/cgate/samples/java/basic/run.sh <sample> <args>

Например:

/opt/moex/cgate/samples/java/basic/run.sh run.repl -Dindex=0

Возможные параметры run.sh:

run.aggrSpy -DisinId= -Ddepth= -DfileName=
run.orderBook -DisinId= -Ddepth= -DfileName=
run.repl -Dindex=
run.repl_resume -Dindex=
run.p2sys -Dlogin= -Dpwd=
run.send
run.send_mt
run.instruments_state

1.2. Основные объекты
Библиотека вводит набор объектов, с помощью которых осуществляется доступ к различным функциям системы. Основными объ-
ектами являются:

Окружение (Environment) Описывает рабочее окружение библиотеки. Этот объект существует в единственном экземпляре.
Его предназначение состоит в проведении инициализации и деинициализации подсистем, ведении
журналов работы и управлении памятью.

Соединение (Connection) Обеспечивает доступ к соединению с роутером Plaza-2

Сообщение (Message) Описывает какое либо сообщение. В виде сообщений представляется вся информацию, отправля-
емая и получаемая пользователем - уведомления об обновлении данных, приказы в торговую си-
стему, уведомления об исполнении приказов, уведомления об открытии и закрытии потоков данных.

Подписчик (Listener) Предоставляет доступ к получению сообщений. Этот интерфейс используется для получения всех
сообщений - обновлений потоков данных, ответов об исполнении приказов - если Вы получаете
какое-либо сообщение, то Вы делаете это с помощью объекта Listener.

Публикатор (Publisher) Предоставляет доступ к отправке сообщений. Всё, что Ваш код отправляет, он отправляет с помо-
щью одного из объектов Publisher.

Объекты Listener и Publisher существуют в привязке к какому-либо соединению. Вы можете использовать много соединений, много
подписчиков и публикаторов в зависимости от архитектуры Вашего приложения; как правило, соединения для получения обновле-
ний рыночной информации отделяются от соединений, предназначенных для отправки приказов.

Общая схема объектов библиотеки в составе клиентского ПО выглядит следующим образом:

Клиентский программный интерфейс 27.01.2026

8

В общем окружении может существовать несколько соединений, каждое из которых содержит произвольное количество подписчи-
ков и публикаторов, каждый из которых владеет некоторым количеством сообщений. При практическом использовании, как пра-
вило, назначение каждого соединения и соединенных с ним подписчиков и публикаторов продумывается исходя из фактических
потребностей приложения.

1.3. Общие сведения по работе с основными объектами Cgate
Объекты Сgate: connection, listener, publisher в настройках url имеют параметр name, который отвечает за именование объекта
в системе. Имя объекта должно быть уникальным. В случае попытки создать объект с занятым именем возвращается ошибка
CG_ERR_INVALIDARGUMENT. Параметр name не обязателен для задания, по умолчанию Cgate присваивает объектам имена
"noname_%d", где %d - некоторое число. Пользователям рекомендуется задавать параметр name для упрощения разборов логов
Cgate.

В Cgate за время жизни объекта отвечает пользователь. Методы _new создают объекты. Методы _destroy разрушают объекты. Для
избежания утечек памяти и системных ресурсов для каждого созданного объекта должен вызываться парный разрушающий метод.

В Cgate из callback lsn нельзя вызывать следующие функции:

• cg_lsn_destroy

• cg_conn_destroy

• cg_pub_destroy

• cg_pub_close

• cg_env_open

• cg_env_close

Вызов lsn_close, conn_close из callback lsn допускается после получения сообщения CG_MSG_OPEN.

Порядок открытия подписчиков и публикаторов важен, если в callback слушателя используется публикатор mq reply. Публикатор
доложен быть открыт в первую очередь, т.к. в противном случае при открытии подписчика мы можем получить сообщение mq и не
будем иметь активного публикатора на этот момент времени.

В разных версиях Cgate объекты при разрыве соединения с вышестоящим роутером ведут себя по-разному. Так, в версиях Cgate до
1.3.10 при разрыве одного из соединений с вышестоящими роутерами соединение переходило в состояние opening, при этом все
объекты, связанные с этим соединением, закрывались. Уведомление о невалидности соединения приходило после определённого
таймаута (3 минуты для сервисов репликации).

В Cgate версии 1.3.10 объекты ведут себя иначе. В Plaza 2 версии 202 и выше реализован механизм, когда сервисы (например,
P2Proxy) уведомляют объекты Cgate о своём закрытии. При этом связанный с соединением объект закрывается немедленно, а
объект listener закрывается через 3 репликационных таймаута (30 секунд в текущей реализации). Все остальные объекты остаются
открытыми и продолжают работать.

1.4. Работа с соединением
Объект "Соединение" обеспечивает взаимодействие с роутером Plaza-2 для отправки и получения сообщений. Эти объекты могут
создаваться в произвольном количестве в любое время работы ПО при инициализированном окружении; тем не менее, рекомен-
дуется создавать соединения при старте ПО, а уничтожать - непосредственно перед выходом.

Создание соединения выполняется вызовом cg_conn_new, например так:

cg_conn_t* conn;
result = cg_conn_new("p2tcp://127.0.0.1:4001;app_name=test", &conn);

Клиентский программный интерфейс 27.01.2026

9

В этом примере создаётся соединение по протоколу TCP/IP с роутером Plaza-2 на порту 4001, запущенным на той же машине
и именем приложения test. Вызов этой функции инициализирует объект соединения, но не приводит к фактической установке
соединения.

Установка соединения производится посредством вызова функции conn_open:

result = cg_conn_open(conn, 0);

, где conn - объект, инициализированный вызовом функции cg_conn_new, а 0 в качестве второго параметра означает отсутствие
параметров вызова открытия соединения.

Закрытие соединения выполняется вызовом conn_close:

result = cg_conn_close(conn);

При этом связь с роутером Plaza-2 разрывается, но объект остаётся инициализированным и может быть открыт повторно.

Уничтожение объекта выполняется с помощью функции conn_destroy:

result = cg_conn_destroy(conn);

Инициализация соединения может провалиться в случае нарушения целостности установки или неправильной конфигурации, на-
пример, были переданы некорректные параметры. В этом случае правильным действием будет остановка ПО и анализ конфигу-
рации.

Открытие соединения может завершаться с ошибкой в силу разных причин, например, неготовности роутера Plaza-2 обслуживать
входящие соединения, сбой в канале связи и прочее. Открытие соединения нужно выполнять циклично, так как следующая попытка
открытия может оказаться удачной.

Пример описанного поведения:

cg_conn_t* conn;
result = cg_conn_new("p2tcp://127.0.0.1:4001;app_name=test", &conn);
if (result != CG_ERR_OK)
{
 // инициализация соединения провалилась
 // дальнейшая работа невозможна
 // сообщить об ошибке и выйти из программы
 return;
}

// в этом месте существует инициализированный объект conn,
// с которым можно работать - получать статус, открывать, закрывать

while (haveToExit()) // основной цикл программы
{
 uint32_t state;
 result = cg_conn_getstate(conn, &state); // получить статус соединения
 if (result != CG_ERR_OK) // произошла ошибка получения статуса соединения
 {
 // сообщить об ошибке и выйти из программы
 return;
 }
 switch (state)
 {
 case CG_STATE_CLOSED: // соединение закрыто, значит пробуем открыть
 result = cg_conn_open(conn, 0);
 // сообшить в случае ошибки
 break;
 case CG_STATE_ERROR: // соединение в состоянии ошибки, значит надо закрыть
 result = cg_conn_close(conn);
 // сообшить в случае ошибки
 break;
 case CG_STATE_ACTIVE: // соединение активно, с ним можно работать
 ...
 }
 ...
}

Подобный цикл реализует правильную работу с соединением: если соединение закрыто, то будет предпринята попытка его открыть;
если соединение перешло в состояние ошибки, то выполняется его закрытие; работа с соединением производится в то время,
когда оно активно.

В этом примере используется вызов функции cg_conn_getstate:

uint32_t state;

Клиентский программный интерфейс 27.01.2026

10

result = cg_conn_getstate(conn, &state);

Эта функция возвращает состояние инициализированного объекта "Соединение". Отправку и получение сообщений можно выпол-
нять только в том случае, когда соответствующее соединение находится в состоянии "Активно" (CG_STATE_ACTIVE).

Соединение, находящееся в активном состоянии, нуждается в периодическом вызове функции обработки событий conn_process,
в ходе которой выполняется вызов пользовательских функций обратного вызова, а также внутренняя обработка:

case CG_ACTIVE:
{
 result=cg_conn_process(conn, 0, 0);
 if (result != CG_ERR_OK && result != CG_ERR_TIMEOUT)
 {
 // работа соединения нарушена
 result = cg_conn_close(conn);
 }
 ...
 break;
}

Вызов conn_process принимает в качестве второго параметра интервал времени в миллисекундах, в течение которого происхо-
дит ожидание появление нового события внутри соединения. При этом, во время ожидания вызов conn_process блокируется. В
случае, если в течение указанного времени не было произведено обработки ни одного сообщения, функция вернёт значение
CG_ERR_TIMEOUT - это значение не является в данном случае индикатором ошибки и может быть использовано, например, для
индикации того, что входящие сообщения отсутствуют и логика ПО может перейти к следующей задаче. Третий параметр заре-
зервирован.

Примечание! Если задать 0 в качестве значения второго параметра, то блокировка не происходит, при этом может достигаться
100% загрузка ядра CPU.

1.5. Получение потоков репликации
Получение потоков репликации выполняется с помощью объектов "Подписчик". Объект подписчик создаётся в привязке к соеди-
нению вызовом функции cg_lsn_new, например, так:

result = cg_lsn_new(conn, "p2repl://FORTS_TRADE_REPL", dataCB, user_data, &lsn);

В этом примере lsn инициализируется объектом "Подписчик", настроенным на получение потока репликации FORTS_TRADE_REPL
через соединение conn. Сообщения об обновлениях данных, а также других событиях жизненного цикла потока будут приходить в
заданную пользователем функцию обратного вызова dataCB. При создании подписки возможно задание различных параметров, в
том числе клиентской схемы репликации; в этом случае инициализация объекта будет происходить так:

result = cg_lsn_new(conn,
 "p2repl://FORTS_TRADE_REPL;scheme=|FILE|ini/trades.ini|TRADES",
 dataCB, user_data, &lsn);

, где путь к файлу описания схемы и название секции соответствующего ini-файла задаются в параметре scheme строкой специ-
ального формата.

В случае успешного вызова функции cg_lsn_new объект находится в инициализированном, но не активном состоянии. Фактически
открытие потока происходит посредством вызова функции cg_lsn_open:

result = cg_lsn_open(lsn, 0);

В этом примере поток репликации открыт без указания параметров, что означает, что он будет открыт с параметрами по умолчанию:

• номер жизни схемы данных не установлен (равен 0)

• ревизии всех таблиц равны 0, что означает их получение с нуля

• режим репликации выбран, как snapshot+online, что приводит к получению среза таблиц (или полной их истории), а затем пере-
ходу к получению данных в режиме он-лайн

Параметры задаются в виде строки:

result = cg_lsn_open(lsn, "mode=online");

При этом поток будет открыт в режиме online, что исключает фазу получения начального слепка данных. В режиме online, при раз-
рывах соединения, не гарантируется непрерывность потока данных. Подробное описание возможных параметров см. в описании
функции cg_lsn_open.

Функция cg_lsn_open может возвращать код ошибки в разных случаях: временная недоступность потока, нарушение работы кана-
ла. Для правильной работы следует обеспечить циклические попытки открытия потоков.

Поток закрывается вызовом функции cg_lsn_close:

result = cg_lsn_close(lsn);

Клиентский программный интерфейс 27.01.2026

11

При этом происходит отключение подписчика от получения данных и сообщения по обновлению данного потока прекращают идти
через соединение; сам объект остаётся в инициализированном состоянии и может быть открыт повторно, в том числе и с другими
параметрами.

Уничтожение объекта происходит посредством вызова cg_lsn_destroy:

result = cg_lsn_destroy(lsn);

После этого объект lsn освобождается и дальнейшая работа с ним невозможна.

Для корректного получения обновлений данных объектом "Подписчик" необходимо вызывать функцию conn_process для соеди-
нения, к которому привязан объект. Частота получения данных не превышает частоту вызовов conn_process, поэтому для макси-
мальной скорости получения данных нужно обеспечить максимально возможную частоту вызова conn_process для интересующих
соединений. При отсутствии вызова conn_process для соединения в течение timeout = 30 секундам происходит отключение под-
писчика. Минимальная рекомендованная частота вызова conn_process - не меньше одного раза в 10 секунд.

При получении данных, а также в моменты возникновения других событий в жизненном цикле потока репликации происходит вызов
задаваемой пользователем в lsn_new функции обратного вызова, имеющей следующий вид:

typedef CG_RESULT (*CG_LISTENER_CB)(cg_conn_t* conn,
 cg_listener_t* listener,
 struct cg_msg_t* msg,
 void* data);

В функцию обратного вызова передаются:

• conn - соединение, к которому привязана подписка

• listener - объект "Подписчик"

• msg - пришедшее сообщение

• data - пользовательские данные, переданные в момент вызова функции lsn_new

Сообщение msg, которое приходит в пользовательскую функцию, в общем случае описывается следующей структурой:

struct cg_msg_t
{
 uint32_t type; // Тип сообщения
 size_t data_size; // Размер данных
 void* data; // Указатель на данные
};

Любое сообщение, приходящее в пользовательскую функцию, гарантированно имеет указанные поля.

Идентификация конкретного вида сообщения выполняется с помощью анализа поля type. При получении потоков репликации
используются следующие типы сообщений:

CG_MSG_OPEN Сообщение приходит в момент активации потока данных. Это событие гарантированно
возникает до прихода каких либо данных по данной подписке. Для потоков репликации
приход сообщения означает, что схема данных согласована и готова для использования
(Подробнее см. Схемы данных) Данное сообщение не содержит дополнительных данных
и его поля data и data_size не используются.

Примечание: Методы cg_pub_getscheme, cg_lsn_getscheme можно вызывать только после
прихода сообщения CG_MSG_OPEN, до этого момента схема не определена.

CG_MSG_CLOSE Сообщение приходит в момент закрытия потока данных. Приход сообщения означает, что
поток был закрыт пользователем или системой. В поле data содержится указатель на int,
по указанному адресу хранится информация о причине закрытия подписчика. Возможны
следующие причины:

• CG_REASON_UNDEFINED - не определена;

• CG_REASON_USER - пользователь вернул ошибку в callback подписчика;

• CG_REASON_ERROR - внутренняя ошибка;

• CG_REASON_DONE - вызван метод cg_lsn_destroy;

• CG_REASON_SNAPSHOT_DONE - снэпшот получен.

CG_MSG_TN_BEGIN Означает момент начала получения очередного блока данных. В паре со следующим со-
общением может быть использовано логикой ПО для контроля целостности данных. Дан-
ное сообщение не содержит дополнительных данных и его поля data и data_size не ис-
пользуются.

Клиентский программный интерфейс 27.01.2026

12

CG_MSG_TN_COMMIT Означает момент завершения получения очередного блока данных. К моменту прихода
этого сообщения можно считать, что данные полученные по данной подписке, находят-
ся в непротиворечивом состоянии и отражают таблицы в синхронизированном между со-
бой состоянии. Данное сообщение не содержит дополнительных данных и его поля data
и data_size не используются.

CG_MSG_STREAM_DATA Сообщение прихода потоковых данных. Поле data_size содержит размер полученных дан-
ных, data указывает на сами данные. Само сообщение содержит дополнительные поля,
которые описываются структурой cg_msg_streamdata_t. Подробнее о получении данных
будет рассказано ниже в данном разделе.

CG_MSG_P2REPL_ONLINE Переход потока в состояние online - это означает, что получение начального среза было
завершено и следующие сообщения CG_MSG_STREAM_DATA будут нести данные он-
лайн. Данное сообщение не содержит дополнительных данных и его поля data и data_size
не используются.

CG_MSG_P2REPL_LIFENUM Изменен номер жизни схемы. Такое сообщение означает, что предыдущие данные, полу-
ченные по потоку, не актуальны и должны быть очищены. При этом произойдёт повторная
трансляция данных по новому номеру жизни схемы данных. Поле data сообщения указы-
вает на целочисленное значение, содержащее новый номер жизни схемы; поле data_size
содержит размер целочисленного типа. Подробнее про обработку номера жизни схемы в
конце данного раздела.

CG_MSG_P2REPL_CLEARDELETED Произошла операция массового удаления устаревших данных. Поле data сообщения ука-
зывает на структуру cg_data_cleardeleted_t, в которой указан номер таблицы и номер ре-
визии, до которой данные в указанной таблице считаются удаленными. Если ревизия в
cg_data_cleardeleted_t == CG_MAX_REVISON, то последующие ревизии продолжатся с 1.

CG_MSG_P2REPL_REPLSTATE Сообщение содержит состояние потока данных; присылается перед закрытием потока.
Поле data сообщения указывает на строку, которая в закодированном виде содержит со-
стояние потока данных на момент прихода сообщения - сохраняются схема данных, но-
мера ревизий таблиц и номер жизни схемы на момент последнего CG_MSG_TN_COMMIT
(Внимание: при переоткрытии потока с replstate ревизии, полученные после последнего
CG_MSG_TN_COMMIT, будут присланы повторно!) Эта строка может быть передана в вы-
зов cg_lsn_open в качестве параметра "replstate" по этому же потоку в следующий раз, что
обеспечит продолжение получения данных с момента остановки потока.

При приходе события CG_MSG_STREAM_DATA параметр msg пользовательской функции обратного вызова содержит указатель
на расширенную структуру данных:

struct cg_msg_streamdata_t
{
 uint32_t type; /// Message type = CG_MSG_STREAM_DATA
 size_t data_size; /// Data size
 void* data; /// Data pointer
 int64_t owner_id; /// Message owner id
 size_t msg_index; /// Message number in active scheme
 uint32_t msg_id; /// Unique message ID (if applicable)
 const char* msg_name; /// Message name in active scheme
 int64_t rev; /// Message sequence number
 size_t num_nulls; /// Size of presence map
 uint8_t* nulls; /// Presence map. Contains 1 for NULL fields
 uint64_t user_id; /// User ID message is intended for
};

Доступ к расширенной структуре осуществляется следующим способом:

CG_RESULT dataCallback(cg_conn_t* conn,
 cg_listener_t* listener,
 struct cg_msg_t* msg,
 void* data)
{
 switch(msg->type)
 {
 case CG_MSG_STREAM_DATA:
 {
 // приведение указателя к расширенной структуре
 cg_msg_streamdata_t* replmsg = (cg_msg_streamdata_t*)msg;
 // здесь можно использовать расширенную структуру
 ...
 }
 ...
 }
}

Клиентский программный интерфейс 27.01.2026

13

С помощью данной структуры можно узнать номер таблицы и её имя в схеме данных - эта информация доступна в полях msg_index
и msg_name структуры. Для реплики Plaza-2 поле msg_id не используется и его значение равно 0. Поле rev содержит ревизию
(номер обновления) записи в таблице, а поле nulls может содержать указатель на массив байт, значения которых определяют,
имеется ли конкретное поле в записи или отсутствует.

Данные, на которые ссылается указатель data сообщения, структурированы в соответствие со схемой данных, используемых в
данной подписке. О том, что такое схемы данных и каким образом можно получить доступ к интересующим полям записи, можно
узнать в следующем разделе.

Номер жизни - это атрибут схемы данных, который служит для определения актуальности полученных в потоке данных. Номер
жизни схемы у источника реплики (сервера) и клиента должны совпадать. Сравнение производится при открытии потока реплика-
ции. Если номера жизни не совпадаю, это означает, что предыдущие данные, полученные в потоке, не актуальны и должны быть
очищены. Сигналом о таком событии служит специальная нотификация CG_MSG_P2REPL_LIFENUM, содержащая новый номер
жизни схемы.

Клиентский номер жизни схемы задается в параметрах функции cg_lsn_open:

• cg_lsn_open(lsn, "lifenum=%d"). Допускается задавать "lifenum=0", строка "lifenum=" также является допустимым вариантом и
эквивалентна заданию "lifenum=0".

• cg_lsn_open(lsn, "replstate=%s") - восстановление из строки состояния потока реплики. Строка состояния - это строка, кото-
рая в закодированном виде содержит состояние потока данных на момент его предыдущего закрытия. Под состоянием пото-
ка здесь понимается: схема данных, номера ревизий таблиц и номер жизни схемы. Данная строка приходит в нотификации
CG_MSG_P2REPL_REPLSTATE перед закрытием потока данных.

Номер жизни не может быть задан одновременно в 'lifenum' и 'replstate'.

Номер жизни схемы всегда десятичное число. Если значение номера жизни не будет десятичным числом, открытие подписки
произойдет с ошибкой.

После передачи клиентского номера жизни запускается процесс его верификации. Возможны 3 ситуации:

• переданный clientLifeNumber < serverLifeNumber. В этом случае подписка открывается, клиентский код перед CG_MSG_OPEN
получает сообщение CG_MSG_P2REPL_LIFENUM, в поле данных которого указан текущий серверный номер жизни. При приходе
данного сообщения необходимо очистить все старые данные и получить их заново.

• переданный clientLifeNumber = serverLifeNumber. Объект "Подписчик" готов к работе сразу, без уведомлений и очистки данных.

• переданный clientLifeNumber > serverLifeNumber. Объект "Подписчик" переходит в состояние CG_STATE_ERROR.

Допускается вообще не передавать номер жизни при открытии подписки. В этом случае объект "Подписчик" начнет работу по
серверному номеру жизни, получая нотификацию CG_MSG_P2REPL_LIFENUM.

1.6. Работа со схемами данных
Любые данные, которые принимаются или отправляются в процессе взаимодействия клиентского ПО с торговой системой, специ-
альным образом структурированы. Для описания структуры конкретных сообщений применяются схемы данных.

Схема данных описывает множество возможных сообщений для выбранного канала данных (подписки или публикации), поля и
типы этих сообщений, а также задает правила доступа к этим данным. Схема данных описывается следующей структурой:

struct cg_scheme_desc_t {
 // Тип схемы
 uint32_t scheme_type;

 // свойства схемы
 uint32_t features;

 // Количество сообщений в схеме
 size_t num_messages;

 // Указатель на список описаний сообщений
 struct cg_message_desc_t* messages;

 /// Свойства схемы
 struct cg_value_pair_t* hints;

};

В настоящее время поддерживается единственный тип схемы, которому соответствует идентификатор 1 - данные хранятся в би-
нарном виде с выравниванием 4 байта без поддержки опциональных полей.

Поле features описывает доступную информацию в схеме - по этому полю можно узнать, заданы ли значения по умолчанию для
полей в данной схеме, имеют ли поля или сообщения описания и т.п. За это отвечают константы CG_SCHEME_BIN_*.

Клиентский программный интерфейс 27.01.2026

14

Поле num_messages задает количество сообщений в схеме, а поле messages указывает на первое из них. Сообщения являются
основным объектом, описывающим конкретные структуры данных и используются во всех видах подписки и публикации; например,
для реплики Plaza-2 сообщения описывают события обновления данных в таблицах.

Каждое сообщение описывается структурой:

struct cg_message_desc_t {
 /// указатель на следующее сообщение
 struct cg_message_desc_t* next;

 /// размер блока сообщения
 size_t size;

 /// Количество полей в сообщении
 size_t num_fields;

 /// Указатель на массив описаний полей
 struct cg_field_desc_t* fields;

 /// Идентификатор сообщения
 /// Может быть 0, если идентификатор у сообщения отсутствует
 uint32_t id;

 /// Указатель на имя сообщения
 /// Может быть NULL - в этом случае у сообщения отсутствует имя
 char *name;

 /// Указатель на описание сообщения
 /// Может быть NULL - в этом случае у сообщения отсутствует описание
 char *desc;

 /// Свойства сообщения
 struct cg_value_pair_t* hints;

 /// количество индексов сообщения
 size_t num_indices;

 /// Указатель на первый индекс
 struct cg_index_desc_t* indices;

 ///Поле предназначено для внутреннего пользования
 int64_t owner_id

 /// Величина выравнивания
 size_t align;

};

Поле next указывает на следующее сообщение в схеме или содержит значение NULL, что означает, что данное сообщение - по-
следнее. Таким образом, сообщения упорядочены в связанном списке и доступ к ним можно получить с помощью цикла вида:

cg_scheme_desc_t* schemedesc; // инициализированный указатель на схемы данных
for (cg_message_desc_t* msgdesc = schemedesc->messages;
 msgdesc; msgdesc = msgdesc->next)
{
 // здесь можно работать с описанием сообщения,
 // которое содержится в msgdesc
 ...
}

Поле size структуры описания сообщения задает размер блока в байтах, который требуется для хранения данных сообщения
целиком. Поле num_fields содержит количество полей в сообщении, а fields указывает на первое поле сообщения.

Поля id, name и desc содержат идентификатор сообщения, его имя и описание. Идентификатор, имя или описание могут отсут-
ствовать, в случае, если конкретная схема не описывает эти значения для сообщений.

Поле hints содержит указатель на структуру, которая может быть использована пользователем для автоматической настройки своей
программы на определенный вид или способ обновления данных:

struct cg_value_pair_t {
 /// Pointer to the next list entry
 struct cg_value_pair_t *next;
 /// Key, required
 char * key;

Клиентский программный интерфейс 27.01.2026

15

 /// Value, may be null
 char * value;
};

, где:

• key – ключ хинта;

• value – значение хинта;

• next – указатель на следующий хинт;

• next = 0 – конец списка.

Для хинтов request и reply, подсказывающих, какие сообщения нужно отправлять, а какие приходят в ответ, теперь предусмотрены
следующие параметры:

• request=1 - значение передаётся в поле value;

• reply=1 - значение передаётся в поле value;

Для параметра replies предусмотрено значение 129,99,100 (передаётся в поле value).

Поле num_indices содержит количество индексов, а поле indices указывает на первый индекс. Первый индекс в списке всегда
является уникальным primary ключом.

Индексы описываются следующей структурой:

struct cg_index_desc_t {
 /// указатель на следующий индекс
 struct cg_index_desc_t * next;

 /// количество полей в ключе
 size_t num_fields;

 /// указатель на описание первого поля в ключе
 struct cg_indexfield_desc_t* fields;

 /// имя ключа
 char* name;

 /// описание ключа
 char* desc;

 /// Свойства индекса
 struct cg_value_pair_t* hints;
};

Поле next указывает на следующий индекс в схеме или содержит значение NULL, что означает, что данный индекс - последний.

Поле num_fields указывает на количество полей в индексе.

Поле fields указывает на первое поле в индексе.

Поля name и desc содержат название индекса и его описание.

Поле hints содержит хинты для индекса, например, "unique".

Поля индекса описываются структурой:

struct cg_indexfield_desc_t {
 /// указатель на следующее описание поля ключа
 struct cg_indexfield_desc_t* next;

 /// указатель на поле
 struct cg_field_desc_t* field;

 /// порядок сортировки
 uint32_t sort_order;
};

Поле next указывает на следующее поле в индексе или содержит значение NULL, что означает, что данное поле - последнее.

Поле field указывает на структуру - описатель поля схемы.

Поле sort_order задает порядок сортировки 0 - по возрастанию, 1 - по убыванию.

Клиентский программный интерфейс 27.01.2026

16

Поля сообщения описываются следующей структурой:

/// Описание поля сообщения
struct cg_field_desc_t {
 /// указатель на следующее поле
 struct cg_field_desc_t* next;

 /// Идентификатор поля
 /// Может быть 0, если идентификатор поля отсутствует
 uint32_t id;

 /// Имя поля
 /// Может быть NULL - в этом случае у поля отсутствует имя
 char* name;

 /// Описание поля
 /// Может быть NULL - в этом случае у поля отсутствует описание
 char* desc;

 /// Тип поля
 char* type;

 /// Длина значения данного поля
 size_t size;

 /// Смещение относительно начала сообщения
 size_t offset;

 /// Указатель на значение поля по умолчанию.
 /// Указывает на буфер размером size, в котором хранятся данные в формате type
 /// Если null, то значение по-умолчанию отсутствует
 void* def_value;

 /// Указатель на список значений, принимаемых полями
 struct cg_field_value_desc_t* values;

 /// Указатель на структуру со свойствами сообщения
 struct cg_value_pair_t* hints;

 /// Количество значений, которое содержится в поле values
 size_t num_values;

 /// Максимальное кол-во полей. Значение по умолчанию "1"
 size_t max_count;

 /// Для внутреннего использования
 struct cg_field_desc_t * count_field;

 /// Указатель на описание сообщений с типом полей "m"
 struct cg_message_desc_t * type_msg

};

Поле next указывает на описание следующего поля сообщения или содержит NULL в случае последнего поля. Поля id, name и desc
задают идентификатор, имя и описание поля; для различных схем сообщений эти поля могут содержать пустые значения. Поле
type содержит название типа поля, по которому можно определить способы работы с этим полем. Наиболее часто используемыми
типами полей являются следующие типы:

i1, i2, i4, i8 Целочисленные знаковые значения размером 1, 2, 4 и 8 байт соответственно

u1, u2, u4, u8 Целочисленные беззнаковые значения размером 1, 2, 4 и 8 байт соответственно

a Строка символов размером 1 байт

cNN Строка с максимальной длиной NN (завершаемая байтом со значением 0)

dMM.NN Число в двоично-десятичном формате с общим количеством знаков MM и количеством знаков после запятой
NN

bNN Блок с неформатированными двоичными данными размера NN

t Структура, описывающая дату и время

f Число с плавающей точкой двойной точности размером 8 байт

Клиентский программный интерфейс 27.01.2026

17

Поле size содержит размер значения поля, а поле offset - смещение данного поля в байтах от начала блока данных. Эта информация
позволяет однозначно идентифицировать расположение и размер интересующего поля в блоке данных сообщения.

Поле def_value содержит указатель на значение по умолчанию. Тип и размер значения полностью совпадают с типом и размером
поля, таким образом, инициализация поля значением по-умолчанию может быть выполнена простым копированием. Значение
NULL поля def_value соответствует отсутствию значения по умолчанию.

Поле values содержит указатель на первое значение списка допустимых значений. Значение NULL поля values означает, что поле
может принимать любое значение из области определения типа.

struct cg_field_value_desc_t {
 /// указатель на следующее значение
 struct cg_field_value_desc_t* next;

 /// название значения
 char* name;

 /// описание значения
 char* desc;

 /// указатель на допустимое значение
 void* value;

 /// для полей типа integer (i[1-8], u[1-8]) маска,
 /// определяющая диапазон занимаемых значением бит
 void* mask;
};

Поле next указывает на следующее значение списка допустимых значение поля или содержит значение NULL, что означает, что
данное значение - последнее.

Поля name и desc содержат наименование и описание значения.

Поле value содержит указатель на значение поля, при этом размер и тип значения совпадают с размером и типом самого поля.

Поле mask используется для группировки взаимоисключающих значений, при этом значения с разными масками могут комбини-
роваться.

Предположим, что мы имеем дело с подпиской на получение потока репликации Plaza-2 со следующей схемой данных:

[dbscheme:FutTrade]
table=orders_log
table=heartbeat

[table:FutTrade:orders_log]
field=replID,i8
field=replRev,i8
field=replAct,i8
field=id_ord,i8
field=sess_id,i4

[table:FutTrade:heartbeat]
field=replID,i8
field=replRev,i8
field=replAct,i8
field=server_time,t

Подобный формат описания схем в виде ini-файлов принят в системе Plaza-2.

Эта схема описывает две таблицы (два сообщения) с некоторым набором полей в каждой из них. Предположим, что нас интересует
получение номеров заявок из таблицы orders_log и событий синхронизации серверного времени из таблицы heartbeat - эти значения
содержатся в поле id_ord сообщения orders_log и поле server_time сообщения heartbeat, соответственно.

Существуют два способа разбора получаемых данных - статический, с использованием заранее заготовленных структур данных и
динамический, с вычислением смещений интересующих полей в момент получения схемы.

Статический подход состоит в том, что для интересующих потоков на этапе разработки фиксируются схемы данных, которые будут
использованы в дальнейшем; затем по схемам данных вручную или автоматически, например, с помощью утилиты schemetool,
генерируются описания структур языка C, соответствующие форматам бинарных блоков данных для каждого из принимаемых
сообщений (для языков типа Java или .NET вместо структур генерируется код, который разбирает бинарные блоки сообщений). В
процессе работы данные пришедшего сообщения отображаются на структуру, соответствующую типу сообщения и осуществляется
требуемая обработка данных.

Такой подход позволяет упростить разработку с одной стороны, с другой - фиксирует определённый формат схем данных, что
потребует повторной подготовки структур данных или кода разбора бинарных блоков, в случае изменения схем данных - старые

Клиентский программный интерфейс 27.01.2026

18

структуры могут перестать отображаться на новые форматы сообщений, что в некоторых случаях может привести к сложнообна-
руживаемым ошибкам.

Важно
В случае использования заранее заготовленных структур для отображения данных, следует использовать клиентскую
схему при инициализации потока. При изменении схемы получаемых данных, структуры следует сгенерировать заново.

Заранее заготовленные структуры данных или код для разбора бинарных блоков можно сгенерировать с использованием утилиты
schemetool.

Выглядеть это может следующим образом:

/// Описание структур, полученное с использованием
/// утилиты schemetool

#pragma pack(push, 4)
/// Scheme "FutTrade" description

 struct orders_log
 {
 signed long long replID;
 signed long long replRev;
 signed long long replAct;
 signed long long id_ord;
 signed int sess_id;

 };
 const int orders_log_index = 0;

 struct heartbeat
 {
 signed long long replID;
 signed long long replRev;
 signed long long replAct;
 struct cg_time_t server_time;

 };
 const int heartbeat_index = 1;

#pragma pack(pop)

/// в обработчике подписки

case CG_MSG_STREAM_DATA:
{
 cg_msg_streamdata_t* replmsg = (cg_msg_streamdata_t*)msg;
 if (replmsg->msg_index == orders_log_index)
 {
 orders_log* ordlog = (orders_log *)replmsg->data;
 printf ("Order ID = %lld\n", ordlog->id_ord);
 }
 else
 if (replmsg->msg_index == heartbeat_index)
 {
 heartbeat* hb = (heartbeat *)replmsg->data;
 printf ("Server time = %d:%d:%d.%d\n",
 hb->server_time.hour, hb->server_time.min,
 hb->server_time.sec, hb->server_time.ms);
 }
}

Динамический подход предполагает отсутствие явно зафиксированной схемы данных, напротив - схема данных каждый раз полу-
чается из источника схемы (например, с сервера репликации), а код пользователя анализирует её и осуществляет поиск интере-
сующих сообщений и полей в них.

Подобный подход позволяет создать более универсальную систему, которая сможет переживать не критичные изменения схем
данных; с другой стороны динамический анализ схемы является более сложным в реализации.

Первым шагом такого подхода является подготовка информации об интересующих полях - нужно проанализировать используемую
схему потока данных и запомнить номера интересующих сообщений и смещения интересующих полей:

Клиентский программный интерфейс 27.01.2026

19

/// переменные, которые будут содержать нужную для анализа
/// поступающих данных информацию
size_t index_orders_log; /// индекс сообщения orders_log в схеме
size_t offset_id_ord; /// смещение поля id_ord в блоке

size_t index_hearbeart; /// индекс сообщения heartbeat в схеме
size_t offset_server_time; /// смещение поля server_time в блоке

Этой информации достаточно, для того, чтобы в момент прихода данных идентифицировать тип сообщения и найти нужное поле
в бинарном блоке. Заполнение этих полей выполняется следующим образом:

cg_scheme_desc_t* scheme; // инициализированное описание схемы данных

size_t msgidx = 0;
for (cg_message_desc_t* msgdesc = schemedesc->messages;
 msgdesc; msgdesc = msgdesc->next, msgidx ++)
{
 size_t fieldindex = 0;
 if (strcmp(msgdesc->name, "orders_log") == 0)
 {
 index_orders_log = msgidx;
 for (cg_field_desc_t* fielddesc = msgdesc->fields;
 fielddesc; fielddesc = fielddesc->next, fieldidx ++)
 if (strcmp(fielddesc->name, "id_ord") == 0 &&
 strcmp(fielddesc->type, "i8") == 0)
 offset_id_ord = fieldidx;
 }
 if (strcmp(msgdesc->name, "heartbeat") == 0)
 {
 index_heartbeat = msgidx;
 for (cg_field_desc_t* fielddesc = msgdesc->fields;
 fielddesc; fielddesc = fielddesc->next, fieldidx ++)
 if (strcmp(fielddesc->name, "server_time") == 0 &&
 strcmp(fielddesc->type, "t") == 0)
 offset_server_time = fieldidx;
 }
}

В приведенном коде осуществляется последовательный перебор всех сообщений схемы и поиск нужных полей для интересующих
сообщений. При этом осуществляется проверка типов полей в соответствие с ожиданиями.

Обработка получаемых данных выполняется следующим образом:

/// в обработчике подписки

case CG_MSG_STREAM_DATA:
{
 cg_msg_streamdata_t* replmsg = (cg_msg_streamdata_t*)msg;

 /// приведение к char*, чтобы затем правильно прибавлять offset в байтах
 char* data = (char*)replmsg->data;
 if (replmsg->msg_index == index_orders_log)
 {
 int64_t id_ord = *((int64_t*)(data + offset_id_ord));
 printf ("Order ID = %lld\n", id_ord);
 }
 else
 if (replmsg->msg_index == index_heartbeat)
 {
 cg_time_t *srvtime = (cg_time_t*)(data + offset_server_time);
 printf ("Server time = %d:%d:%d.%d\n",
 srvtime->hour, srvtime->min, srvtime->sec, srvtime->ms);
 }
}

Этот пример будет выводить на экран идентификатор заявки в момент прихода данных по изменению состояния заявки и серверное
время в момент прихода соответствующего сообщения.

Показанный пример демонстрирует следующие полезные практики при создании кода:

• Контроль типов данных при анализе схемы - обеспечивает корректную диагностику ошибок при изменении схем

• Использование численных идентификаторов сообщений вместо строк - положительно влияет на производительность, так вместо
более дорогой операции сравнения строк можно обойтись сравнением двух чисел

Клиентский программный интерфейс 27.01.2026

20

• Отсутствие копирования данных - не нужно обращаться к каждому полю вызовом специальной функции; данные доступны не-
посредственно в буфере сообщения

• Поддержка эволюции схем данных - код, анализирующий схему при открытии потока, сможет работать с разными вариантами
схем данных, без необходимости изменения зашитых идентификаторов и перекомпиляции

1.6.1. Политика использования схем данных

При обновлении версии ТКС Спектра, как правило, происходят изменения схем публичных потоков. В схемы могут добавиться
новые потоки, а в уже существующих потоках могут быть добавлены или удалены какие-то поля. Эти изменения затрагивают и
дистрибутив Cgate, в котором будут присутствовать обновлённые схемы данных. В дистрибутиве Cgate схемы хранятся в каталогах,
соответствующих номерам версий ТКС Спектра: SPECTRA53, SPECTRA56. Каталоги со схемами SPECTRA53, SPECTRA56 не
удаляются; это сделано для того, чтобы при обновлении шлюзового ПО клиенту не пришлось перенастраивать своё ПО.

Существуют два способа работы с сообщениями:

• Динамический способ. Клиент при получении сообщения CG_MSG_OPEN получает схему из lsn. В полученной схеме пользо-
ватель находит интересующие его поля и запоминает их смещения в байтах относительно начала сообщения. При получении
сообщения CG_MSG_STREAM_DATA пользователь, учитывая величину смещения в байтах, извлекает значения для требуемых
полей.

• Статический способ. Клиент при помощи утилиты schemetool или каким-либо другим способом создаёт структуру или класс,
предоставляющий доступ к полям сообщения. При получении сообщения CG_MSG_STREAM_DATA пользователь при помощи
соответствующих методов или полей класса/структуры получает значения для требуемых полей.

... и четыре способа задания схемы данных:

• Схема данных задается в ini-файле на диске;

• Схема данных задается из встроенной в код строки вида:

|STRING|base64encodedscheme

• Используется серверная схема данных;

• Используется схема из репозитория схем данных (только для протокола mq).

Ниже описаны проблемы, возникающие при "неправильном" использовании схем данных:

Способ зада-
ния схемы

Способ работы
с сообщениями

Преимущества Недостатки Комментарий Оценка

Динамический Нет необходимо-
сти перекомпилиро-
вать исходный код
при изменении схем
(при наличии всех
требуемых полей)

Выяснить, что ПО
использует поле, ко-
торое удалено из
шлюза ТКС Спек-
тра, можно только в
runtime.

Рекомендуем прове-
рять ПО во вре-
мя обновлений на
тестовом публичном
полигоне ТКС Спек-
тра.

Можно использо-
вать.

ini-файл на диске

Статический Простота кода, не
нужно запоминать
величину смещения
для требуемых по-
лей.

Структура и код на
диске могут оказать-
ся несогласованны-
ми, в результате
в ПО могут по-
пасть невалидные
данные.

Не рекомендуется к
использованию.

Динамический Нет необходимо-
сти перекомпилиро-
вать исходный код
при изменении схем
(при наличии всех
требуемых полей)

Выяснить, что ПО
использует поле, ко-
торое удалено из
шлюза ТКС Спек-
тра, можно только в
runtime.

Схема поменяться
не может. Рекомен-
дуем проверять ПО
во время обновле-
ний на тестовом
публичном полигоне
ТКС Спектра.

Можно использо-
вать.

Встроенная в код
строка

Статический Простота кода, не
нужно запоминать
величину смещения
для требуемых по-
лей.

Выяснить, что ПО
использует поле, ко-
торое удалено из
шлюза ТКС Спек-
тра, можно только в
runtime.

Схема поменяться
не может. Рекомен-
дуем проверять ПО
во время обновле-
ний на тестовом
публичном полигоне
ТКС Спектра.

Можно использо-
вать.

Серверная схема Динамический Нет необходимо-
сти перекомпилиро-
вать исходный код

Выяснить, что ПО
использует поле, ко-
торое удалено из

Большая вероят-
ность того, что схе-

Можно использо-
вать.

Клиентский программный интерфейс 27.01.2026

21

Способ зада-
ния схемы

Способ работы
с сообщениями

Преимущества Недостатки Комментарий Оценка

при изменении схем
(при наличии всех
требуемых полей)

шлюза ТКС Спек-
тра, можно только в
runtime.

ма на сервере изме-
нится.

Статический Структура и схема
на сервере могут
оказаться несогла-
сованными, в ре-
зультате в ПО мо-
гут попасть нева-
лидные данные.

Большая вероят-
ность того, что схе-
ма на сервере изме-
нится.

Не рекомендуется к
использованию.

Динамический Нет необходимо-
сти перекомпилиро-
вать исходный код
при изменении схем
(при наличии всех
требуемых полей)

Выяснить, что ПО
использует поле, ко-
торое удалено из
шлюза ТКС Спек-
тра, можно только в
runtime.

Большая вероят-
ность того, что схе-
ма на сервере изме-
нится.

Можно использо-
вать.

Репозиторий схем
(только для прото-
кола mq)

Статический Структура и схема
в репозитории схем
могут оказаться не-
согласованными, в
результате в ПО мо-
гут попасть нева-
лидные данные.

Большая вероят-
ность того, что схе-
ма на сервере изме-
нится.

Не рекомендуется к
использованию.

Примечание
Как задать схему из строки:

1. В утилите schemetool передать параметр:

-Dgen-scheme-string=1

(в версии ТКС Спектра 5.6 параметр включен по умолчанию);

2. Сгенерировать url lsn:

p2repl://STREAM_NAME;scheme=SCHEME_STRING_FROM_SCHEMETOOL

Как задать серверную схему:

1. Не задавать параметр scheme, тогда будет использоваться серверная схема

p2repl://STREAM_NAME;

Как задать схему из репозитория (только для протокола mq):

1. Не задавать параметр scheme, тогда будет использоваться последняя схема из репозитория

p2mq://FORTS_SRV;category=FORTS_MSG

Для выбора определённой версии схемы необходимо задать номер версии в параметре version, например

p2mq://FORTS_SRV;category=FORTS_MSG;version=5.8

1.7. Отправка транзакций и получение ответов
Отправка транзакций FORTS и получение ответов об их исполнении выполняется с помощью объектов «Публикатор», «Подписчик».
Объект публикатор создаётся в привязке к соединению вызовом функции cg_pub_new, например, так:

result = cg_pub_new(conn,
 "p2mq://FORTS_SRV;category=FORTS_MSG;"
 "name=PUB;scheme=|FILE|ini/forts_messages.ini|message ",
 &pub);

В этом примере pub инициализируется объектом "Публикатор", настроенным на отправку транзакций FORTS по схеме, хранящейся
в подкаталоге ini с именем файла forts_messages.ini и именем схемы “message” через соединение conn. Публикатору присвоено
имя “PUB”, на которое будет ссылаться подписчик.

В случае успешного вызова функции cg_pub_new объект находится в инициализированном, но не активном состоянии. Дальнейшая
работа с публикатором возможна после вызова функции cg_pub_open:

Клиентский программный интерфейс 27.01.2026

22

result = cg_pub_open(pub, 0);

Параметры открытия для объекта публикатор в настоящее время не предусмотрены, поэтому в качестве второго параметра пере-
даётся пустой указатель.

После того, как публикатор создан и открыт, можно создавать и отправлять транзакции. Для создания транзакции можно восполь-
зоваться функцией cg_pub_msgnew.

result = cg_pub_msgnew(pub, CG_KEY_NAME, “AddOrder”, &msgptr);

В данном случае будет создано сообщение для постановки заявки SPECTRA (транзакция AddOrder) по имени, и указатель на него
будет записан в переменную msgptr. При помощи функции cg_pub_msgnew можно так же создавать сообщения по его номеру в
активной схеме и идентификатору.

Сообщение представляет собой указатель на структуру cg_msg_data_t:

struct cg_msg_data_t
{
 uint32_t type; // Тип сообщения = CG_MSG_P2REPL_DATA
 size_t data_size; // Размер данных
 void* data; // Указатель на данные

 size_t msg_index; // Номер сообщения в активной схеме
 uint32_t msg_id; // Уникальный идентификатор сообщения
 const char* msg_name; // Имя сообщения в схеме

 uint32_t user_id; // Пользовательский номер сообщения
 const char* addr; // Адрес получателя
 struct cg_msg_data_t* ref_msg; // Связанное сообщение (сейчас не используется)
};

Поле data структуры указывает на буфер в памяти соответствующего размера, который необходимо заполнить согласно активной
схеме. Проще всего это сделать приведя этот указатель к правильной структуре. Например, так:

ord = (struct AddOrder*)msgptr->data;
strcpy(ord->broker_code, "HB00");

Создать описание структуры из схемы можно при помощи утилиты schemetool.

После того, как сообщение создано и заполнено, его нужно отправить при помощи функции cg_pub_post:

 result = cg_pub_post(pub, msgptr, CG_PUB_NEEDREPLY);

Флаг CG_PUB_NEEDREPLY означает, что мы хотим получать ответы в соответствующий подписчик lsnreply.

После того, как сообщение отправлено, его можно уничтожить при помощи функции cg_pub_msgfree:

result = cg_pub_msgfree(pub, msgptr);

При отсылке однотипных заявок, более эффективно использовать созданное сообщение повторно.

Публикатор закрывается вызовом функции cg_pub_close:

result = cg_pub_close(pub);

При этом происходит отключение публикатора от объекта соединение; сам объект остаётся в инициализированном состоянии и
может быть открыт повторно. Уничтожение объекта происходит посредством вызова cg_pub_destroy:

result = cg_pub_destroy(pub);

После этого объект pub освобождается и дальнейшая работа с ним невозможна.

Подписчик для получения ответов на команды создаётся следующим образом:

result = cg_lsn_new(conn, “p2mqreply://;ref=PUB”, replyCB, user_data, &lsnreply);

Этот вызов инициализирует переменную lsnreply специальным объектом-подписчиком для получения ответов на отправленные
публикатором сообщения. Связь между подписчиком и публикатором осуществляется по имени, в данном случае это имя “PUB”,
параметр “ref=PUB” строки инициализации устанавливает эту связь. С одним публикатором можно сопоставить один подписчик.
Имена соответствующих пар должны быть уникальны. Сообщения, содержащие ответы на транзакции, а также других событиях
публикатора будут приходить в функцию replyCB. Жизненный цикл данного объекта «подписчик» ничем не отличается от жизнен-
ного цикла подписчика реплики, рассмотренного в соответствущем разделе, за исключением того, что в replyCB приходят не сооб-
щения системы репликации, а простые единичные сообщения MQ, описываемые структурой cg_msg_data_t, которые ссылаются
на данные, описываемые схемой соответствующего публикатора, а так же нотификация CG_MSG_P2MQ_TIMEOUT, в случае, если
был превышен интервал ожидания ответа на сообщение. При закрытии соединения, на все отправленные mq запросы, на которые

Клиентский программный интерфейс 27.01.2026

23

не был получен ответ приходят сообщения с нотификацией CG_MSG_P2MQ_TIMEOUT. При возврате ошибки из callback пользо-
вателя подписчик закрывается. Подписчик p2mqreply должен создаваться после создания публикатора mq, в противном случае
ссылка на объект ref=PUB будет не валидной. Порядок разрушения этих связанных объектов не важен.

Пользовательский обработчик ответов может выглядеть следующим образом:

CG_RESULT ClientMessageCallback(cg_conn_t* conn, cg_listener_t* listener, struct cg_msg_t* msg, void* data)
{
 switch (msg->type)
 {
 case CG_MSG_DATA:
 {
 uint32_t* data = msg->data;
 printf("Client received reply [id:%d, data: %d, user-id: %d, name: %s]\n",
 ((struct cg_msg_data_t*)msg)->msg_id,
 ((uint32_t)msg->data),
 ((struct cg_msg_data_t*)msg)->user_id,
 ((struct cg_msg_data_t*)msg)->msg_name);

 {
 struct scheme_desc_t* scheme;
 size_t bufSize;

 if (cg_lsn_getscheme(listener, &scheme) != CG_ERR_OK)
 scheme = 0;

 if (cg_msg_dump(msg, scheme, 0, &bufSize) == CG_ERR_BUFFERTOOSMALL)
 {
 char* buffer = malloc(bufSize+1);

 bufSize++;
 if (cg_msg_dump(msg, scheme, buffer, &bufSize) == CG_ERR_OK)
 printf("client dump: %s\n", buffer);
 free(buffer);

 }
 }
 break;
 }
 case CG_MSG_P2MQ_TIMEOUT:
 {
 printf("Client reply TIMEOUT\n");
 break;
 }
 default:
 printf("Message 0x%X\n", msg->type);
 }
 return CG_ERR_OK;
}

Этот пользовательский обработчик либо выводит дамп сообщений с помощью вспомогательной функции cg_msg_dump, либо, в
случае превышения ожидания ответа, отслеживает эту ситуацию и выводит на экран соответствующие сообщения.

Для осуществления связи между отправленными сообщениями и ответами на них, следует использовать поле user_id структуры
cg_msg_data_t: задание user_id у отправляемого сообщения обеспечивает получение ответного сообщения с тем же user_id.

1.8. Сценарий работы с p2sys
При установке соединения p2sys подписчик получает 2 сообщения типа CG_MSG_DATA:

• ConnectionConnected (msgid = 3). Поле данных содержит переменную state типа int32 со статусом операции, равным 2;

• RouterDisconnected (msgid = 2). Поле данных также содержит переменную state типа int32 со значением 1.

В случае успеха пользователь может послать исходящий запрос аутентификации. Для этого он должен создать сообщение
RouterLogin (msgid = 1) типа CG_MSG_DATA. В поле данных этого сообщения должна находиться строка формата "USERNAME=
%имя_пользователя%;PASSWORD=%пароль%".

Если логин и пароль являются верными, подписчик примет сообщение RouterConnected (msgid = 1). В поле данных содержится
пользовательский логин в виде строки. Если же аутентификация отклонена, подписчик примет сообщение LogonFailed (msgid =
5). В поле данных также содержится статус операции равный 1.

Для отключения от системы Plaza-II необходимо послать сообщение RouterLogout (msgid = 2). Поле данных в этом сообщении
игнорируется. В ответ подписчик должен получить оповещение RouterDisconnected со статусом, равным 1.

Клиентский программный интерфейс 27.01.2026

24

По окончании работы необходимо закрыть объекты стандартным способом: сначала публикатор и подписчик, затем соединение.

1.9. Объекты протокола изменения пароля
Для изменения пароля пользователя предусмотрен специальный протокол p2mqpwd. Протокол обеспечивает защищённую пере-
дачу данных: пароль и логин пользователя не передаются по сети в открытом виде. API протокола реализовано объектами публи-
катора и подписчика.

1.9.1. Публикатор p2mqpwd
Публиктор p2mqpwd предназначен для отправки команды смены пароля в торговую систему. Перед использованием публикатора
необходимо добавить подсистему mqpwd в окружение:

result = cg_env_open("subsystems=mq,replclient,mqpwd;ini=ini/settings.ini;key=72395823576;");

Соединение для публикатора стандартное, и может быть любого типа, как p2tcp, так и p2lrpcq:

cg_conn_t* conn;
result = cg_conn_new("p2tcp://127.0.0.1:4001;app_name=pwd_changer", &conn);
result = cg_conn_open(conn, 0);

Схема публикатора фиксирована и находится в составе дистрибутива CGate по адресу: <каталог инсталляции>\SpectraCGate
\SDK\scheme\SPECTRAXX\change_password_messages.ini.

Задать схему можно как строкой, так и указанием пути к файлу. Остальные параметры публикатора, такие как категория сообщений
и имя сервиса, аналогичны стандартному публикатору p2mq, используемому для посылки команд в торговую систему.

publisher_t* pub = 0;
result = pub_new(conn,
"p2mqpwd://FORTS_SRV;name=pwd_changer;category=FORTS_MSG;
scheme=|FILE|C:\Moscow Exchange\SpectraCGate\SDK\scheme\SPECTRAXX\change_password_messages.ini|
change_password_message",
&pub);
result = pub_open(pub, 0);

Сообщение для смены пароля называется ChangePassword и создаётся стандартным способом с помощью публикатора mqpwd:

cg_msg_data* msg;
result = cg_pub_msgnew(pub, CG_KEY_NAME, “ChangePassword", &msg);

Для смены пароля необходимо заполнить поля сообщения ChangePassword (указать старый и новый пароль) и послать сообщение
в торговую систему аналогично тому, как посылаются другие команды:

result = cg_pub_post(pub, msg, CG_PUB_NEEDREPLY);

1.9.2. Подписчик p2mqpwdreply
Подписчик mqpwd предназначен для получения ответа от торговой системы. Для создания подписчика необходимо указать прото-
кол p2mqpwd:

listener_t* lsn;
result = cg_lsn_new(conn, "p2mqpwdreply://;ref=pwd_changer;", &clientMessageCallback, NULL, &lsn);
result = cg_lsn_open(lsn, "");

В остальном использование подписчика p2mqpwdrely аналогично использованию стандартного подписчика p2mqreply.

Ответ от торговой системы может быть как положительным, так и содержать описание и код ошибки. Возникновение ошибки воз-
можно из-за неправильных пользовательских данных или из-за ошибок системного уровня. При возникновении ошибки пароль
пользователя в системе не меняется.

Получение ответа об успешном выполнении означает изменение пароля пользователя в торговой системе, при этом авторизация
текущего соединения роутера не меняется. Для авторизации роутера с новым паролем необходимо изменить ини-файл роутера и
перезапустить его или использовать протокол p2sys для авторизации из CGate.

Клиентский программный интерфейс 27.01.2026

25

2. Описание API
2.1. Общие соглашения

Программный интерфейс библиотеки построен с учетом ряда соглашений:

• Каждая функция API возвращает код ошибки

• Выходные параметры задаются в качестве указателей на переменные, куда следует поместить возвращаемое функцией значе-
ние и располагаются в конце списка параметров

• Функции имеют префиксы, как правило, состоящие из двух частей, первая - "cg_" означает принадлежность функции библиотеке
Client Gate, вторая идентифицирует класс объектов, с которым работает та или иная функция

○ env_ - функции работы с общим окружением работы системы

○ conn_ - функции работы с соединением

○ lsn_ - функции работы с подписками

○ pub_ - функции работы с отправкой сообщений

○ log_ - функции работы с журналом работы
, при этом существует несколько функций, обладающих только префиксом "cg_" - это вспомогательные и сервисные функции,
которые не относятся к какой либо конкретной группе.

• Функции вида lsn_new, pub_new и т.п. создают и инициализируют объекты, которые затем должны быть освобождены соответ-
ствующими вызовами lsn_destroy, pub_destroy и т.п. В случае, если объекты не будут явно уничтожены, возникнут утечки памяти.

2.2. Жизненный цикл объектов
Объекты, доступ к которым предоставляется библиотекой, имеют жизненный цикл, описываемый следующей схемой:

Объекты в течение своего жизненного цикла существуют в следующих состояниях:

• CG_STATE_CLOSED

Закрытое состояние. В этом состоянии объект создаётся (после вызова cg_OBJ_new) или переходит в него после вызова
cg_OBJ_close. Объект может перейти в состояние CG_STATE_CLOSED в случае ошибки.

• CG_STATE_OPENING

Состояние перехода из закрытого в активное состояние. В этом состоянии объект существует после вызова cg_OBJ_open и до пе-
рехода в состояние CG_STATE_ACTIVE или, в случае возникновения ошибки открытия объекта, в состояние CG_STATE_ERROR.

• CG_STATE_ACTIVE

Активное состояние - основное рабочее состояние объекта. В этом состоянии возможна работа с объектом - обработка собы-
тий соединения, отправка или получение сообщений. В это состояние объект попадает после успешного завершения процесса

Клиентский программный интерфейс 27.01.2026

26

открытия из состояния CG_STATE_OPENING. Из этого состояние объект может перейти либо в состояние CG_STATE_CLOSED
посредством вызова функции cg_OBJ_close, либо в состояние CG_STATE_ERROR в случае возникновения ошибки. Connection
может перейти из CG_STATE_ACTIVE в CG_STATE_OPENING при разрыве соединения между своим и вышестоящим роутером.

Примечание: объект connection при закрытии закрывает все связанные с ним объекты (подписчики и публикаторы).

• CG_STATE_ERROR

Состояние ошибки. В нём объект оказывается, если в процессе его открытия или работы произошла ошибка. Из этого состояния
объект можно перевести в закрытое состояние вызовом cg_OBJ_close или уничтожить объект вызовом cg_OBJ_destroy, если
дальнейшая работа с ним не требуется.

Такая схема состояний используется для следующих объектов:

• Соединения cg_conn_t

• Подписчики cg_listener_t

• Публикаторы cg_publisher_t

2.3. Использование в многопоточном окружении
Библиотека CGate может быть использована в многопоточном окружении, но не является потокобезопасной. Это означает, что
для корректной работы с библиотекой из нескольких потоков необходимо соблюдать специальные правила:

• Работа с объектом "Соединение" в каждый момент времени должна вестить только из одного потока.

При этом корректным является создание соединения из одного потока, а работа с ним из другого - главное, чтобы несколько
потоков не выполняли действия с соединением в одно и то же время. Если существует необходимость разделять соединение
между несколькими потоками одновременно, следует воспользоваться примитивами синхронизации ОС для синхронизации до-
ступа к объекту "Соединение".

• Работа с объектами "Подписчик" и "Публикатор" в каждый момент времени должна вестись только из одного потока, аналогично
объекту "Соединение"

• Объект "Подписчик" привязан к конкретному соединению(тому, которое было задано при их создании) и работа с ним долж-
на вестись из того же потока, из которого ведется работа с соединением. Объект "Публикатор" также привязан к конкретному
соединению(тому, которое было задано при их создании), но работа с ним допускается из другого потока.

2.4. Запуск и остановка окружения
Для начала работы с библиотекой необходимо выполнить инициализацию окружения. Инициализация выполняется с помощью
функции env_open:

CG_RESULT cg_env_open(const char* settings);

Функция принимает на вход строку, описывающую параметры системы. Строка представляет собой набор пар вида
"КЛЮЧ=ЗНАЧЕНИЕ", разделённых точкой с запятой. Поддерживаются следующие параметры:

ini Путь к файлу инициализации. В этом файле описывается конфигурацию библиотеки - режим журналирования и т.п.

Задание параметра может выглядеть, например, так: "ini=conf/settings.ini", в этом случае библиотека будет загру-
жать конфигурацию из файла conf/settings.ini

Секция [p2syslog] задает настройку логирования p2. (см. "Настройка логов p2")

subsystems Инициализируемые подсистемы p2, через запятую.

mq - mq протокол;

replclient - клиент p2 реплики;

mqpwd - протокол смены пароля.

log Способ логирования.

log = std - выводить логи cgate в stdout;

log = null - выводить в /dev/null;

log = p2;

log = p2:p2syslog - где p2syslog название секции с настройками логирования.

minloglevel Минимальный уровень логов для вывода (по умолчанию debug).

Клиентский программный интерфейс 27.01.2026

27

Принимаемые значения: trace, debug, info, notice, warning, error, critical.

key Идентификатор клиентского ПО. Должен быть указан для работы с библиотекой. Ключ используется для получения
доступа в систему Plaza-2 - для тестовой системы существует набор предопределенных ключей; для production -
ключ получается в результате прохождения процедуры сертификации ПО.

Ошибка инициализации может свидетельствовать об ошибке конфигурации: отсутствует конфигурационный файл, нарушена це-
лостность установки и т.п. В случае такой ошибки нет смысла пытаться повторно инициализировать библиотеки; вместо этого сле-
дует остановить ваше ПО и проверить конфигурацию.

Если инициализация провалилась или не была выполнена, работа с другими функциями библиотеки невозможна.

Код инициализация системы может выглядеть следующим образом:

result = cg_env_open("ini=ini/settings.ini;key=72395823576");
if (result != CG_ERR_OK)
{
 // вывести сообщение об ошибке и произвести выход из программы
 ...
 return;
}

Что означает выполнение инициализации библиотеки с конфигурационным файлом ini/settings.ini и ключом приложения
"72395823576". Файл ini/settings.ini должен быть доступен по указанному пути, относительно текущего рабочего каталога в момент
запуска ПО.

Деинициализация выполняется перед выходом из программы вызовом функции env_close:

CG_RESULT cg_env_close(void);

Функция проводит деинициализацию подсистем и закрытие журнала работы. Следует всегда вызывать данную функцию в конце
работы ПО.

2.4.1. Настройка логов p2
Параметры работы с логами задаются в секции [p2syslog] соответствующего ini-файла. В этой секции могут быть заданы следую-
щие параметры (опции):

• logfileperday — задает порционность лог-файлов. Может принимать следующие значения:

○ 0 — новый лог-файл формируется каждый раз при запуске модуля (открытии лога). Старый лог-файл переименовывается пу-
тем добавления к его базовому имени "1". При этом в зависимости от значения параметра "logfilenametype" номер вставляется
в середину названия файла (перед точкой), либо в конец названия (после расширения). При формировании очередного лог-
файла номера предыдущих увеличиваются на единицу. Количество хранимых лог-файлов задается в параметре "logfiledepth".

○ 1 — новый лог-файл создается на каждый день, если в этот день была хотя бы одна запись в лог. Если при открытии лога
необходимый лог-файл уже существует, то новые сообщения дописываются в конец этого файла. При первом открытии лога
к базовому имени лог-файла добавляется дата его создания в формате YYYYMMDD. При этом в зависимости от значения
параметра "logfilenametype" дата вставляется в середину названия файла (перед точкой), либо в конец названия (после рас-
ширения). Количество хранимых лог-файлов задается в параметре "logfiledepth".

○ 2 (значение по умолчанию) — новый лог-файл создается каждый час. Если при открытии лога необходимый лог-файл уже суще-
ствует, то новые сообщения дописываются в конец этого файла. При первом открытии лога к базовому имени лог-файла доба-
вляется дата и время его создания в формате YYYYMMDDHH. При этом в зависимости от значения параметра "logfilenametype"
дата вставляется в середину названия файла (перед точкой), либо в конец названия (после расширения). При переходе через
границу часа создается новый лог-файл с соответствующим именем. Количество хранимых лог-файлов задается в параметре
"logfiledepth".

• logfile — базовое имя лога, используется для формирования имени лог-файла. Если параметр не задан или задано пустое
имя, то используется имя файла исполняемого модуля без расширения. Представляет собой левую часть имени лог-файла,
может быть задан полный или относительный путь. Если задан относительный путь, то полный путь расположения лог-файлов
вычисляется относительно текущего каталога в момент открытия лога. Если задать строку logfile=nul, то лог-файл сформирован
не будет.

• logfilenametype — способ формирования имени лог-файла. Может принимать следующие значения:

○ 0 — дополнительные параметры имени (номер или дата) добавляются в конец названия файла.

○ 1 (значение по умолчанию) — дополнительные параметры имени вставляются в середину названия файла.

• logfiledepth — количество хранимых лог-файлов, включая текущий. Значение должно быть больше нуля, значение по умолча-
нию: 168.

• logtime — определяет формат вывода времени. При наличии соответствующей поддержки в ОС вывод миллисекунд (3 знака)
заменяется на вывод микросекунд (6 знаков). Сейчас эта возможность реализована только под Windows (функция API предста-
влена в Win8+/Win Server 2012). Может принимать следующие значения:

Клиентский программный интерфейс 27.01.2026

28

○ 0 (значение по умолчанию при logfileperday=0) — время не выводится.

○ 1 — время с точностью до секунд выводится на отдельной строке перед соответствующим сообщением, если с момента пре-
дыдущего сообщения прошло не менее секунды. Формат даты: YYYY-MM-DD HH:MM:SS.

○ 2 — время с точностью до тысячных долей секунды выводится в начале каждой строки с сообщением. Формат даты: YYYY-
MM-DD HH:MM:SS.mmm.

○ 3 (значение по умолчанию при logfileperday=1 или logfileperday=2) — время с точностью до тысячных долей секунды выводится
в начале каждой строки с сообщением, но при этом календарная дата не выводится. Формат даты: HH:MM:SS.mmm. Опция
может быть указана только для режимов "logfileperday=1" и "logfileperday=2".

○ 4 — в начале каждой строки с сообщением выводится количество микросекунд, прошедших с момента инициализации би-
блиотеки P2SysLog.

Предупреждение
Внимание! Сейчас это значение соответствует формату вывода со значением "5".

○ 5 — в начале каждой строки с сообщением выводится количество микросекунд, прошедших с момента старта компьютера.

○ 6 — время выводится как объединение режимов (3) и (5). Например: 13:13:58.627|00010475078718. Опция может быть указана
только для режимов "logfileperday=1" и "logfileperday=2".

• logtoconsole — разрешает копирование всех лог-сообщений на консоль. Может принимать следующие значения:

○ 0 (default) — копирование запрещено.

○ 1 — копирование разрешено.

• traceini — задает имя ini-файла, куда необходимо заносить все трейсы. Если параметр traceini не задан, то все трейсы попадают
в основной ini-файл приложения. Отдельный файл с трейсами позволяет присваивать основному ini-файлу свойство Read only,
что невозможно в случае, когда трейсы заносятся в него же. Если в качестве имени ini-файла указан nul, то отдельный ini-файл с
трейсами не формируется. В этом случае трейсы никуда не записываются и попадают в лог, только если выводятся посредством
не P2TRACE*_0 макросов.

• addthreadid — при включении данной настройки к каждой строке лог-файла будет добавляться информация о потоке, который
это выводит (ThreadID). Настройка актуальна для многопоточных приложений. Может принимать следующие значения:

○ 0 — выключено.

○ 1 (default) — включено.

• logfilecache — размер (в байтах) буфера в памяти процесса, в который кэшируется лог. Значение должно быть в диапазоне
64-32767, при выходе за пределы этого диапазона возвращается ошибка. Значение по умолчанию определяется установленной
операционной системой. Опция используется для управления кэшированием в памяти операций записи в лог-файл. При задании
данного параметра (использовании кэша) следует помнить, что файловая операция записи в лог-файл не активизируется пока
не заполнится весь буфер. Поэтому слишком большой размер буфера может привести к ситуации, когда лог-файл будет пустым.
В асинхронном режиме логирования буфер файла будет сброшен при отсутствии вызовов подсистемы логирования в течение
300 миллисекунд. При установке значения в 0 при включенном режиме асинхронного логирования выводится предупреждение
и используется значение по умолчанию.

• logasync — при включении настройки запись в лог-файл будет производиться в отдельном потоке. Может принимать следующие
значения:

○ 1 (default) — запись в лог-файл производится в отдельном потоке.

○ 0 — запись в лог-файл производится в общем потоке.

• logthread_affinity_ex — маска процессоров для потока асинхронных логов. Маска представляет собой строку чисел, разделен-
ных запятой. Каждое число задает номер ядра, на котором может выполняться поток логов. Используется только при асинхрон-
ном логировании (logasync=1).

2.5. Соединение
Объект "Соединение" обеспечивает взаимодействие с роутером Plaza-2 для отправки и получения сообщений. Эти объекты могут
создаваться в произвольном количестве в любое время работы ПО при инициализированном окружении; тем не менее, рекомен-
дуется создавать соединения при старте ПО, а уничтожать - непосредственно перед выходом.

2.5.1. cg_conn_new
Создание соединения выполняется вызовом:

CG_RESULTcg_conn_new(const char* settings, cg_conn_t** connptr);

Клиентский программный интерфейс 27.01.2026

29

Параметрами являются строка инициализации соединения и указатель, в который будет занесен указатель на
созданное соединение. Строка создания соединения задаётся в формате URL следующего вида: "TYPE://
HOST:PORT;param1=value1;param2=value;...;paramN=valueN", где

TYPE Тип соединения. В настоящее время поддерживаются три вида соединений:

p2tcp Соединение с роутером Plaza-2 посредством протокола TCP/IP. Медленнее, удобно для отладки, может связы-
ваться с роутером, установленным на другой машине

p2lrpcq Соединение с роутером Plaza-2 посредством разделяемой памяти. Быстрее, оптимально для production, рабо-
тает исключительно в рамках одной машины.

p2sys Специальное соединение для управление роутером.

Примечание: В случае p2lrpcq соединение должно всегда закрываться корректно, т.к. в противном случае в роутере соеди-
нение не деинициализируется, поэтому повторное соединение к роутеру под этим же именем будет не возможно без пере-
запуска роутера.

HOST Адрес, с которым устанавливается соединение. В случае типа соединения p2tcp - это адрес машины, на которой запущен
интересующий процесс P2MQRouter, в случае p2lrpcq - 127.0.0.1.

PORT Номер порта, по которому производится соединение. Должен быть указан как для p2tcp, так и для p2lrpcq; в последнем
случае порт будет использован в качестве управляющего канала для установки соединения через разделяемую память.

Параметры допустимые при задании соединений p2tcp и p2lrpcq:

app_name Имя приложения Plaza-2. В пределах одного роутера Plaza-2 каждое соединение с ним должно обладать уни-
кальным именем. Этот идентификатор используется для маршрутизации сообщений в соответствующие обра-
ботчики.

local_pass Пароль для соединения с роутером Plaza-2, если роутер сконфигурирован на проверку открываемых соедине-
ний паролем. При подключении к удалённому роутеру использование local_pass является обязательным.

timeout Время в миллисекундах, в течение которого ожидается установка соединения с роутером в процессе вызова
conn_open(...). В случае превышения времени ожидания соединения вызов conn_open(...) вернёт ошибку.

local_timeout Время в миллисекундах, в течение которого ожидается ответ от роутера Plaza-2 при использовании соединения
p2lrpcq.

name имя объекта в cgate;

lrpcq_buf Размер буфера lrpcq в байтах.

Пример вызова функции:

const char* conn_str = "p2lrpcq://127.0.0.1:4001;app_name=myapp";
cg_conn_t* conn;

result = cg_conn_new(conn_str, *conn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to initialize connection: 0x%X\n", result);
 return;
}

Примеры строки соединения:

p2lrpcq://127.0.0.1:4001;app_name=example;timeout=2000;local_timeout=500;lrpcq_buf=0;name=p2lrpcq_example;
p2tcp://192.168.1.1:4003;app_name=example2;timeout=2000;local_pass=123;name=p2tcp_example;
p2sys://127.0.0.1:4001;app_name=example3;timeout=2000;name=p2sys_example;

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

2.5.2. cg_conn_open

Открытие соединения выполняется вызовом:

CG_RESULT cg_conn_open(cg_conn_t* conn, const char* settings);

Клиентский программный интерфейс 27.01.2026

30

Параметрами являются указатель на объект соединения и строка открытия соединения. Строка открытия соединения в настоящее
время не используется и должна быть либо пустой, либо NULL.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Предпринята попытка открыть соединение в то время, когда оно не может быть открыто, т.к. либо
уже активно, либо находится в состоянии ошибки

CG_ERR_UNSUPPORTED Возвращается при невозможности проверки пользовательского ключа, при этом в лог выводится
сообщение "Certificate check failed".

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Важно
Возврат функцией значения CG_ERR_OK не означает, что соединение было успешно открыто - об этом факте можно
судить только по изменению статуса соединения (cg_conn_getstate). Успешное исполнение данной функции означает,
что процесс открытия соединения был начат успешно и через некоторое время соединение может перейти в состояние
CG_STATE_ACTIVE в случае успеха или в состояние CG_STATE_ERROR в случае неудачи открытия соединения.

Рекомендуется делать паузу между попытками открытия соединения, например 1 секунду, чтобы уменьшить нагрузку на
логовую систему и клиентский роутер при невозможности открытия соединения или ошибках при его открытии.

Передаваемые значения:

settings В настоящее время не используется. Зарезервировано для будущего использования.

Пример вызова функции:

cg_conn_t* conn; // указатель на инициализированный вызовом conn_new объект

result = cg_conn_open(conn, NULL);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to open connection: 0x%X\n", result);
 // Надо предпринять попытку повторного открытия соединения
}

2.5.3. cg_conn_close
Закрытие соединения выполняется вызовом:

CG_RESULT cg_conn_close(cg_conn_t* conn);

Параметром является указатель на объект соединения.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Предпринята попытка закрыть соединение в то время, когда оно закрыто.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

После закрытия соединения, оно может быть повторно открыто вызовом cg_conn_open.

Пример вызова функции:

cg_conn_t* conn; // указатель на инициализированный вызовом conn_new объект

result = cg_conn_close(conn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to close connection: 0x%X\n", result);
 return;
}

Клиентский программный интерфейс 27.01.2026

31

2.5.4. cg_conn_destroy
Уничтожение соединения выполняется вызовом:

CG_RESULT cg_conn_destroy(cg_conn_t* conn);

Параметром является указатель на объект соединения.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Предпринята попытка уничтожить соединение в то время, когда оно не было корректно закрыто.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Данный вызов уничтожает объект, на который указывает параметр conn и освобождает все связанные с ним ресурсы. После вызова
этой функции объект больше не может быть использован. Эта функция должна быть вызвана для каждого объекта, созданного
вызовом cg_conn_new, вне зависимости от того, выполнялась работа (открытие, получение данных, отправка сообщений) с данным
объектом или нет. При вызове cg_conn_destroy для активного conn внутри cgate происходит закрытие соединения, а потом его
разрушение.

Пример вызова функции:

cg_conn_t* conn; // указатель на объект, который был закрыт вызовом conn_close

result = cg_conn_destroy(conn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to destroy connection: 0x%X\n", result);
 return;
}

2.5.5. cg_conn_process
Обработка сообщений соединения выполняется вызовом:

CG_RESULT cg_conn_process(cg_conn_t* conn, uint32_t timeout, void* reserved);

Параметрами является указатель на объект соединения и время ожидания событий. Последний параметр reserved в настоящее
время не используется и должен быть равен NULL.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_TIMEOUT За указанное время не было обработано ни одного события системы

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Данный вызов осуществляет итерацию работы с соединением, которая включает в себя опрос очереди входящих сообщений, ана-
лиз пришедших данных, вызов пользовательских функций обратного вызова. Эта функция должна вызываться из кода пользова-
теля с частотой, соответствующей максимальной желаемой частоте получения данных.

Важно
Пользовательские функции обратного вызова для подписчиков, привязанных к данному соединению будут вызваны в
процессе работы этой функции из того же потока исполнения.

В случае, если значения параметра timeout отличается от 0, вызов будет заблокирован на timeout миллисекунд в ожидании событий.
Если в момент вызова функции очередь входящих сообщений не пуста, функция не будет ничего ожидать и сразу же перейдёт к
обработке входящих сообщений. Если функцию не вызывать дольше трёх репликационных пингов (3*repl_ping (значение repl_ping
по умолчанию = 10 секунд)), то возникает timeout подписчика, а потом timeout соединения, после чего соединения и подписчики
закрываются.

Пример вызова функции:

cg_conn_t* conn; // указатель на соединение в активном состоянии

Клиентский программный интерфейс 27.01.2026

32

// разбираем входящие сообщения в цикле, но не более 100 за итерацию
for (int callidx = 0; callidx < 100; ++ callidx)
{
 result = cg_conn_process(conn, 0, NULL);

 if (result == CG_ERR_TIMEOUT) // сообщений нет
 break; // перейти к дальнейшей логике работы ПО
 else
 if (result != CG_ERR_OK)
 {
 // попытка обработки соединения завершилась ошибкой
 // вывести сообщение и закрыть соединение
 fprintf(stderr, "Failed to process connection: 0x%X\n", result);
 result = cg_conn_close(conn); //
 if (result != CG_ERR_OK)
 {
 // закрытие соединения провалилось, выйти из программы
 fprintf(stderr, "Failed to close connection: 0x%X\n", result);
 return;
 }
 break;
 }
}

2.5.6. cg_conn_getstate
Получение статуса соединения выполняется вызовом:

CG_RESULT cg_conn_getstate(cg_conn_t* conn, uint32_t* state);

Параметрами является указатель на объект соединения и указатель на значение размером 4 байта, куда будет записан текущий
статус соединения.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Данный вызов должен быть использован для периодического получения статуса соединения, для того, чтобы можно было выпол-
нить действия, связанные с переходом объекта подписки в разные состояния - например, выполнить закрытие соединения, если
он перешла в состояние ошибки. Более подробно статусы объектов описаны в разделе Жизненный цикл объектов.

Эта функция доступна для вызова в любое время между вызовами cg_conn_new и cg_conn_destroy.

Пример вызова функции:

cg_connection_t* conn; // указатель на объект соединение
uint32_t state; // Сюда будет записан статус

result = cg_conn_getstate(conn, &state);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to query connection state: 0x%X\n", result);
 return;
}

switch (state)
{
 case CG_STATE_ERROR: /* ... */
 case CG_STATE_CLOSED: /* ... */
}

2.6. Подписчик
Объект "Подписчик" обеспечивает получение сообщений через указанное соединение. Правила, по которым получаются сообще-
ния зависят от типа подписчика - это могут быть как сообщения peer-to-peer, так и сообщения publish-subscribe, такие как реплика.

Работами с объектами "Подписчик" в API производятся посредством указателя cg_listener_t*.

Клиентский программный интерфейс 27.01.2026

33

2.6.1. cg_lsn_new
Создание подписчика выполняется вызовом:

CG_RESULT cg_lsn_new(cg_conn_t* conn, const char* settings, CG_LISTENER_CB callback, void* data,
cg_listener_t** lsnptr);

Параметрами являются: указатель на инициализированный объект соединения, в котором создаётся подписчик, строка иници-
ализации подписчика, указатель на функцию обратного вызова, которая будет вызываться при возникновении событий, про-
извольный указатель, который будет передаваться в функцию обратного вызова и указатель, в который будет занесен указа-
тель на созданный подписчик. Строка создания соединения задаётся в формате URL следующего вида: "TYPE://[STREAM]
[;param1=value1[;param2=value[;...[;paramN=valueN]]]]", где

TYPE Тип подписки. Поддерживаются следующие типы подписки:

p2repl Получение табличного потока репликации Plaza-2

p2mqreply Получение ответов на ранее отправленные сообщения

p2ordbook Получение активных заявок с использованием срезов стаканов для начальной синхронизации, а затем пере-
ход на он-лайн поток

p2sys Получение статуса: соединения, роутера, авторизации.

Остальные параметры зависят от типа подписки.

Параметры, поддерживаемые типом подписки p2repl:

STREAM Задаёт имя потока табличной репликации.

Параметр "scheme" Путь к используемой схемы данных потока. См. Схемы данных.

Параметр "tables" Список требуемых таблиц из серверной схемы, разделенных запятой. Не допускается одновременное за-
дание параметров "tables" и "scheme"

Параметры, поддерживаемые типом подписки p2ordbook:

STREAM Задаёт имя он-лайн потока с журналом действий над заявками (FORTS_TRADE_REPL)

Параметр "snapshot" Имя потока со срезами активных заявок (FORTS_USERORDERBOOK_REPL).

Параметр "online.scheme" Путь к используемой схемы данных он-лайн потока. Схема должна содержать таблицу
orders_log.

Параметр "snapshot.scheme" Путь к используемой схемы данных снапшот потока. Схема должна содержать таблицы orders
и info.

Параметр "online.data" Имя таблицы с заявками для online потока. Значение по умолчанию "orders_log".

Параметр "snapshot.data" Имя таблицы с заявками для snapshot потока. Значение по умолчанию "orders".

Параметр "snapshot.bind" Имя таблицы и поля с ревизией, по которому осуществляется сшивка потоков. Значение по
умолчанию "info.logRev".

Параметры, поддерживаемые типом подписки p2mqreply:

Параметр "ref" Содержит имя публикатора, который был использован для отправки сообщений, ответы на которые требуется
получать в данном подписчике. На момент создания подписчика p2mqreply должен существовать и связанный
с ним по ref публикатор.

Подписчик "p2mqreply" использует в качестве схемы данных схему, заданную в связанном публикаторе. Именна эта схема данных
будет возвращена вызовом cg_lsn_getscheme.

Подписчик "p2ordbook" использует в качестве схемы объединенную схему срезов и он-лайн потоков. При этом данные в момент
прихода среза будут соответствовать сообщениям из схемы со срезами данных, а после перехода в онлайн будут приходить сооб-
щения из он-лайн схемы. При использовании статических структур данных для работы с сообщениями данного потока, нужно иметь
описания структур как для срезов, так и для он-лайн данных, причём следует обращать внимания на индексы соответствующих
таблиц. При использовании динамического подхода к работе со схемами, следует применять стандартные практики - запомнить
номера интересующих сообщений и полей и использовать их во время прихода данных.

Параметр callback функции указывает на пользовательскую функцию обратного вызова, которая имеет следующий вид:

CG_RESULT callback(cg_conn_t* conn, cg_listener_t* listener, struct cg_msg_t* msg, void* data);

Эта функция вызывается в момент возникновения какого либо события по данной подписке: открытие подписки, закрытие, приход
сообщения и т.п. В качестве параметров функция обратного вызова получает указатель на соединение, в котором создана подписка,

Клиентский программный интерфейс 27.01.2026

34

указатель на объект подписки, в котором возникло событие, указатель на сообщение и пользовательский указатель data, который
был передан в вызов cg_lsn_new. Код возврата пользовательского обработчика должен быть установлен в 0 в случае успеха обра-
ботки сообщения или в другое значение в случае ошибки. В случае возврата ошибки из callback подписчик будет закрыт, и в callback
придут последовательно сообщения: replstate - с состоянием подписчика на последний CG_MSG_TN_COMMIT, CG_MSG_CLOSE.

Важно
Вызов функции cg_lsn_new выполняет только инициализацию объекта подписки, но не приводит к фактическому нача-
лу получения данных; для начала получения данных необходимо перевести подписку в активное состояние вызовом
cg_lsn_open.

В пользовательский callback могут приходить следующие сообщения:

Тип под-
писчика

Тип сообщения Описание

p2repl,
p2mqreply,
p2sys

CG_MSG_OPEN Сообщение приходит в момент активации потока данных. Это событие гаран-
тированно возникает до прихода каких либо данных по данной подписке. Для
потоков репликации приход сообщения означает, что схема данных согласо-
вана и готова для использования (Подробнее см. Схемы данных) Данное со-
общение не содержит дополнительных данных и его поля data и data_size не
используются.

p2repl,
p2mqreply,
p2sys

CG_MSG_CLOSE Сообщение приходит в момент закрытия потока данных. Приход сообщения
означает, что поток был закрыт пользователем или системой. В поле data со-
держится указатель на int, по указанному адресу хранится информация о при-
чине закрытия подписчика. Возможны следующие причины:

• CG_REASON_UNDEFINED - не определена.

• CG_REASON_USER - пользователь вернул ошибку в callback слушателя.

• CG_REASON_ERROR - внутренняя ошибка.

• CG_REASON_DONE - вызван метод cg_lsn_destroy.

• CG_REASON_SNAPSHOT_DONE - снэпшот получен.

p2repl CG_MSG_TN_BEGIN Означает момент начала получения очередного блока данных. В паре со сле-
дующим сообщением может быть использовано логикой ПО для контроля це-
лостности данных. Данное сообщение не содержит дополнительных данных
и его поля data и data_size не используются.

p2repl CG_MSG_TN_COMMIT Означает момент завершения получения очередного блока данных. К момен-
ту прихода этого сообщения можно считать, что данные полученные по дан-
ной подписке, находятся в непротиворечивом состоянии и отражают таблицы
в синхронизированном между собой состоянии. Данное сообщение не содер-
жит дополнительных данных и его поля data и data_size не используются.

p2repl CG_MSG_STREAM_DATA Сообщение прихода потоковых данных. Поле data_size содержит раз-
мер полученных данных, data указывает на сами данные. Само сооб-
щение содержит дополнительные поля, которые описываются структурой
cg_msg_streamdata_t. Подробнее о получении данных см. раздел Получение
потоков репликации

p2repl CG_MSG_P2REPL_ONLINE Переход потока в состояние online - это означает, что получение начально-
го среза было завершено и следующие сообщения CG_MSG_P2REPL_DATA
будут нести данные он-лайн. Данное сообщение не содержит дополнитель-
ных данных и его поля data и data_size не используются.

p2repl CG_MSG_P2REPL_LIFENUM Изменен номер жизни схемы. Такое сообщение означает, что предыдущие
данные, полученные по потоку, не актуальны и должны быть очищены. При
этом произойдёт повторная трансляция данных по новому номеру жизни схе-
мы данных. Поле data сообщения указывает на целочисленное значение, со-
держащее новый номер жизни схемы; поле data_size содержит размер цело-
численного типа.

p2repl CG_MSG_P2REPL_CLEARDELETED Произошла операция массового удаления устаревших данных. Поле data
сообщения указывает на структуру cg_data_cleardeleted_t, в которой ука-
зан номер таблицы и номер ревизии, до которой данные в указанной та-
блице считаются удаленными. Если ревизия в cg_data_cleardeleted_t ==
CG_MAX_REVISON, то последующие ревизии продолжатся с 1.

p2repl CG_MSG_P2REPL_REPLSTATE Сообщение содержит состояние потока данных; присылается перед закрыти-
ем потока. Поле data сообщения указывает на строку, которая в закодирован-
ном виде содержит состояние потока данных на момент прихода сообщения
- сохраняются схема данных, номера ревизий таблиц и номер жизни схемы.
Эта строка может быть передана в вызов cg_lsn_open в качестве параметра

Клиентский программный интерфейс 27.01.2026

35

Тип под-
писчика

Тип сообщения Описание

"replstate" по этому же потоку в следующий раз, что обеспечит продолжение
получения данных с момента остановки потока.

p2mqreply,
p2sys

CG_MSG_DATA Сообщение содержит ответ на ранее отосланное состояние. Поле data ука-
зывает на данные, а поле data_size содержит размер блока данных. Сооб-
щение описывается структурой cg_msg_data_t и содержит дополнительные
поля, позволяющие идентифицировать исходное сообщение, а также инфор-
мацию о схеме данных. Подробнее см. раздел Отправка команд и получение
ответов.

p2mqreply CG_MSG_P2MQ_TIMEOUT Сообщение приходит в том случае, если ответ на отправленное ранее сооб-
щение не был получен в течение указанного в соответствующем publisher вре-
мени. Сообщение описывается структурой cg_msg_data_t и содержит значе-
ние user_id, задаваемое при отправке исходного сообщения.

Примеры url:

• p2sys://;name=p2sys_lsn

• p2repl://FORTS_REFDATA_REPL;name=repl_sample1

• p2repl://FORTS_ORDLOG_REPL;scheme=|FILE|./ini/ordlog_repl.ini|scheme;name=repl_sample2

• p2ordbook://FORTS_ORDLOG_REPL;snapshot=FORTS_ORDBOOK_REPL;name=ordbook_sample1

• p2ordbook://FORTS_TRADE_REPL;snapshot=FORTS_USERORDERBOOK_REPL;
online.scheme=|FILE|ini/futtrade.ini|FutTrade;name=ordbook_sample2

• p2ordbook://FORTS_TRADE_REPL;snapshot=FORTS_USERORDERBOOK_REPL;
online.scheme=|FILE|ini/futtrade.ini|FutTrade;snapshot.scheme=|FILE|ini/orderbook.ini|CustReplScheme;name=ordbook_sample3

• p2mqreply://;ref=pub_name;name=mqreply_sample

Пример создания подписчика на получение потока репликации:

cg_conn_t* conn; // указатель на инициализированный объект "Соединение"

const char* lsn_str = "p2repl://FORTS_REFDATA_REPL";
cg_listener_t* lsn;

result = cg_lsn_new(conn, lsn_str, callback, 0, *lsn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to initialize listener: 0x%X\n", result);
 return;
}

Пример создания подписчика на получение ответов на отправленные команды:

cg_conn_t* conn; // указатель на инициализированный объект "Соединение"

// строка инициализации публикатора отправки команд
// указан параметр name=TN1
const char* pub_str = "p2mq://FORTS_SRV;category=FORTS_MSG;name=TN1";
cg_publisher_t* pub;

// строка инициализации подписчика получения ответов
// указан параметр ref=TN1, который обеспечивает связь с публикатором
const char* lsn_str = "p2mqreply://;ref=TN1";
cg_listener_t* lsn;

result = cg_lsn_new(conn, lsn_str, callback, 0, *lsn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to initialize listener: 0x%X\n", result);
 return;
}

2.6.2. cg_lsn_open
Открытие подписки выполняется вызовом:

Клиентский программный интерфейс 27.01.2026

36

CG_RESULT cg_lsn_open(cg_listener_t* lsn, const char* settings);

Параметрами являются указатель на объект подписки и строка открытия подписки. Строка параметров открытия задаётся в фор-
мате "param1=value1;param2=value2;....;paramN=valueN", причем названия и значения параметров зависят от типа подписки. Па-
раметр settings можно задавать только в p2repl-листенера, так как он больше нигде не используется.

Параметры открытия подписки p2repl:

mode Определяет режим получения данных и может принимать следующие значения:

snapshot Поток открывается в режиме получения среза данных. При этом данные в режиме он-
лайн транслироваться не будут

online Поток открывается в режиме получения онлайн-данных. Срез данных получен не будет,
данные будут идти с момента открытия потока

snapshot+online Поток открывается в режиме получения снапшота, а затем перехода в режим получения
он-лайн.

replstate Задаёт состояние потока, с которого следует произвести открытие. Значение этого параметра должно соответ-
ствовать строке, полученной в сообщении CG_MSG_P2REPL_REPLSTATE в момент предыдущего закрытия
потока.

lifenum Задаёт номер жизни схемы. Данный параметр может быть использован для подключения к потоку данных,
если по каким либо причинам возможности, предоставляемые параметром "replstate" не подходят. Если задан
параметр "replstate", то значение данного параметра будет проигнорировано.

rev.TABLE_NAME Задаёт начальную ревизию таблицы TABLE_NAME. Вместо TABLE_NAME следует подставить имя интересую-
щей таблицы. Данный параметр может быть использован для подключения к потоку данных, если по каким либо
причинам возможности, предоставляемые параметром "replstate" не подходят. Если задан параметр "replstate",
то значение данного параметра будет проигнорировано. Возможно указание этого параметра несколько раз
для разных таблиц в потоке, например "rev.orders_log=234445;rev.deal=55". Запрещено задавать ревизию та-
блицы TABLE_NAME без указания lifenum=%d (ревизия без номера жизни не имеет смысла).

Параметры "replstate" и ("lifenum" + "rev.TABLE_NAME") являются взаимоисключающими. Также запрещено одновременно задавать
значения параметров "replstate" и "rev.TABLE_NAME". Таким образом, возможны только следующие комбинации параметров:

• replstate

• lifenum

• lifenum + rev.TABLE_NAME

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Предпринята попытка открыть подписку в то время, когда она не может быть открыта, т.к. либо уже
активна, либо находится в состоянии ошибки.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Важно
Возврат функцией значения CG_ERR_OK не означает, что подписка была успешно открыта - об этом факте можно судить
только по изменению статуса подписки (cg_lsn_getstate). Успешное исполнение данной функции означает, что процесс
открытия подписки был начат успешно и через некоторое время подписка может перейти в состояние CG_STATE_ACTIVE
в случае успеха или в состояние CG_STATE_ERROR в случае неудачи открытия.

Рекомендуется делать паузу между попытками открытия подписки, например 1 секунду, чтобы уменьшить нагрузку на
логовую систему при невозможности открытия подписки.

Пример вызова функции:

cg_listener_t* lsn; // указатель на инициализированный вызовом cg_lsn_new объект
const char* lsn_open_str = "mode=online";

result = cg_lsn_open(lsn, lsn_open_str);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to open listener: 0x%X\n", result);

Клиентский программный интерфейс 27.01.2026

37

 // Надо предпринять попытку повторного открытия подписчика
}

2.6.3. cg_lsn_close
Закрытие подписки выполняется вызовом:

CG_RESULT cg_lsn_close(cg_listener_t* lsn);

Параметром является указатель на объект подписчика.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Предпринята попытка закрыть подписчика в то время, когда окружение было некорректно инициа-
лизировано.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

После закрытия подписчика, он может быть повторно открыт вызовом cg_lsn_open.

Пример вызова функции:

cg_listener_t* lsn; // указатель на открытую подиску

result = cg_lsn_close(lsn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to close listener: 0x%X\n", result);
 return;
}

2.6.4. cg_lsn_destroy
Уничтожение подписчика выполняется вызовом:

CG_RESULT cg_lsn_destroy(cg_listener_t* lsn);

Параметром является указатель на объект подписки.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Предпринята попытка уничтожить подписчика в то время, когда когда окружение было некорректно
инициализировано.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Данный вызов уничтожает объект, на который указывает параметр lsn и освобождает все связанные с ним ресурсы. После вызова
этой функции объект больше не может быть использован. Эта функция должна быть вызвана для каждого объекта, созданного
вызовом cg_lsn_new, вне зависимости от того, выполнялась работа (открытие, получение данных, отправка сообщений) с данным
объектом или нет.

При разрушении активного подписчика cgate закрывает подписчика, после чего производит его разрушение.

Пример вызова функции:

cg_listener_t* lsn; // указатель на объект, который был закрыт вызовом cg_lsn_close

result = cg_lsn_destroy(lsn);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to destroy listener: 0x%X\n", result);
 return;

Клиентский программный интерфейс 27.01.2026

38

}

2.6.5. cg_lsn_getstate
Получение статуса подписчика выполняется вызовом:

CG_RESULT cg_lsn_getstate(cg_listener_t* lsn, uint32_t* state);

Параметрами является указатель на объект подписки и указатель на значение размером 4 байта, куда будет записан текущий
статус подписчика.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Данный вызов должен быть использован для периодического получения статуса подписчика, для того, чтобы можно было выпол-
нить действия, связанные с переходом объекта подписки в разные состояния - например, выполнить закрытие подписки, если она
перешла в состояние ошибки. Более подробно статуса объектов описаны в разделе Жизненный цикл объектов.

Пример вызова функции:

cg_listener_t* lsn; // указатель на объект подписки
uint32_t state; // Сюда будет записан статус

result = cg_lsn_getstate(lsn, &state);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to query listener state: 0x%X\n", result);
 return;
}

switch (state)
{
 case CG_STATE_ERROR: /* ... */
 case CG_STATE_CLOSED: /* ... */
}

2.6.6. cg_lsn_getscheme
Получение схемы подписчика выполняется вызовом:

CG_RESULT cg_lsn_getscheme(cg_listener_t* lsn, cg_scheme_desc_t** schemeptr);

Параметрами является указатель на объект подписки и указатель на переменную, в которую будет записан указатель на описание
схемы.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Вызов используется для получения схемы данных объекта подписки (подробнее см. раздел Работа со схемами данных). Схема
данных доступна для получения с момента прихода события OPEN для подписки. В случае, если при создании подписки схема
данных не была явно задана, между двумя сессиями работы с подпиской схема может измениться, т.е. в общем случае нельзя
рассчитывать на то, что в цепочке вызовов open/close, open/close схема после первого open будет аналогична схеме после вызова
второго open. Это может решаться либо указанием клиентской схемы данных, в тех случаях, когда это поддерживается типом
подписки, либо анализом схемы каждый раз в момент прихода события OPEN.

Пример вызова функции:

cg_listener_t* lsn; // указатель на объект подписки
cg_scheme_desc_t* schemedesc; // Сюда будет записан указатель на описание схемы

Клиентский программный интерфейс 27.01.2026

39

result = cg_lsn_getscheme(lsn, &schemedesc);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to query listener scheme: 0x%X\n", result);
 return;
}

// напечатать кол-во сообщений в схеме
printf("Number of messages: %d\n", schemedesc->num_messages);

2.7. Публикатор
Объект "Публикатор" обеспечивает отправку сообщений через указанное соединение. Правила, по которым отправляются сооб-
щения зависят от типа публикатора и соединения.

Работами с объектами "Публикатор" в API производятся посредством указателя cg_publisher_t*.

2.7.1. cg_pub_new
Создание подписчика выполняется вызовом:

CG_RESULTcg_pub_new(cg_conn_t* conn, const char* settings, cg_publisher_t** pubptr);

Параметрами являются: указатель на инициализированный объект соединения, в котором создаётся публикатор, строка инициали-
зации публикатора и указатель, в который будет занесен указатель на созданный подписчик. Строка создания соединения задаётся
в формате URL следующего вида: "TYPE://[NAME][;param1=value1[;param2=value[;...[;paramN=valueN]]]]", где

TYPE Тип публикатора. Поддерживаются следующие типы:

p2mq Отправка произвольных сообщений Plaza-2

p2sys Отправка запросов аутентификации или выхода из системы. Подробнее см. "Объекты протокола
p2sys"

Параметр "name" Определяет уникальное имя публикатора. Может быть использован для связи между парными публикаторами
и подписчиками (например, публикатора mq и подписчика mqreply).

Остальные параметры зависят от типа подписки.

Параметры, поддерживаемые типом публикатора p2mq:

NAME Задаёт имя сервиса, на который будут отправляться сообщения через данный публикатор.

Параметр "scheme" Путь к используемой схемы данных. См. Схемы данных. Используемая схема данных должна содержать
описания запросов и ответов - связанный подписчк p2mqreply будет использовать эту схему данных при
разборе сообщений.

Параметр "category" Категория отправляемых сообщений. Для отправки команд в торговую систему FORTS данный параметр
должен быть зафиксирован как "FORTS_MSG"

Параметр "timeout" Время ожидания ответа на отправленное сообщение в миллисекундах.

Параметр "version" Версия схемы данных. Применяется только для схем из репозитория.

.

Важно
Вызов функции cg_pub_new выполняет только инициализацию объекта публикатора, но не приводит к фактическому раз-
решению отправки сообщений; для начала отправки сообщений необходимо перевести публикатор в активное состояние
вызовом cg_pub_open.

Пример создания подписчика на отправку данных в торговую систему:

cg_conn_t* conn; // указатель на инициализированный объект "Соединение"

const char* pub_str = "p2mq://FORTS_SRV;category=FORTS_MSG;name=TN1";
cg_publusher_t* pub;

result = cg_pub_new(conn, pub_str, *pub);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to initialize publisher: 0x%X\n", result);

Клиентский программный интерфейс 27.01.2026

40

 return;
}

Пример того, как можно получить ответы на отправленные через публикатор команды, можно найти в разделе описания функции
cg_lsn_new.

2.7.2. cg_pub_open
Открытие публикатора выполняется вызовом:

CG_RESULT cg_pub_open(cg_publisher_t* pub, const char* settings);

Параметрами являются указатель на объект публикатора и строка открытия. В настоящий момент публикаторы не требуют задания
строки параметров и этот параметр должен быть NULL или пустой строкой.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Предпринята попытка открыть публикатор в то время, когда он не может быть открыт, т.к. либо уже
активен, либо находится в состоянии ошибки

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Важно
Возврат функцией значения CG_ERR_OK не означает, что публикатор была успешно открыт - об этом факте можно
судить только по изменению статуса публикатора (cg_pub_getstate). Успешное исполнение данной функции означает,
что процесс открытия публикатора был начат успешно и через некоторое время подписка может перейти в состояние
CG_STATE_ACTIVE в случае успеха или в состояние CG_STATE_ERROR в случае неудачи открытия.

Рекомендуется делать паузу между попытками открытия публикатора, например 1 секунду, чтобы уменьшить нагрузку на
логовую систему при невозможности открытия публикатора.

Пример вызова функции:

cg_publisher_t* pub; // указатель на инициализированный вызовом cg_pub_new объект

result = cg_pub_open(pub, 0);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to open publisher: 0x%X\n", result);
 // Надо предпринять попытку повторного открытия публикатора
}

2.7.3. cg_pub_close
Закрытие публикатора выполняется вызовом:

CG_RESULT cg_pub_close(cg_publisher_t* pub);

Параметром является указатель на объект публикатора.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Предпринята попытка закрыть публикатор в то время когда окружение некорректно инициализиро-
вано.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

После закрытия подписчика, он может быть повторно открыт вызовом cg_pub_open.

Пример вызова функции:

Клиентский программный интерфейс 27.01.2026

41

cg_publisher_t* pub; // указатель на открытый публикатора

result = cg_pub_close(pub);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to close publisher: 0x%X\n", result);
 return;
}

2.7.4. cg_pub_destroy
Уничтожение публикатора выполняется вызовом:

CG_RESULT cg_pub_destroy(cg_publisher_t* pub);

Параметром является указатель на объект публикатор.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Предпринята попытка уничтожить публикатор в то время, когда окружение не было корректно ини-
циализировано.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Данный вызов уничтожает объект, на который указывает параметр pub и освобождает все связанные с ним ресурсы. После вызова
этой функции объект больше не может быть использован. Эта функция должна быть вызвана для каждого объекта, созданного
вызовом cg_pub_new, вне зависимости от того, выполнялась работа (открытие, отправка сообщений) с данным объектом или нет.

При вызове cg_pub_destroy для активного публикатора, сперва происходит закрытие публикатора, а потом его разрушение.

Примеры:

p2sys://;name=p2sys_pub
p2mq://FORTS_SRV;category=FORTS_MSG;name=srvlink;timeout=5000;scheme=|FILE|forts_messages.ini|message

Пример вызова функции:

cg_publisher_t* pub; // указатель на объект, который был закрыт вызовом cg_pub_close

result = cg_pub_destroy(pub);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to destroy publisher: 0x%X\n", result);
 return;
}

2.7.5. cg_pub_getstate
Получение статуса публикатора выполняется вызовом:

CG_RESULT cg_pub_getstate(cg_publisher_t* pub, uint32_t* state);

Параметрами является указатель на объект публикатора и указатель на значение размером 4 байта, куда будет записан текущий
статус публикатора.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Данный вызов должен быть использован для периодического получения статуса публикатора, для того, чтобы можно было выпол-
нить действия, связанные с переходом объекта подписки в разные состояния - например, выполнить закрытие публикатора, если
он перешла в состояние ошибки. Более подробно статусы объектов описаны в разделе Жизненный цикл объектов.

Эта функция доступна для вызова в любое время между вызовами cg_pub_new и cg_pub_destroy.

Клиентский программный интерфейс 27.01.2026

42

Пример вызова функции:

cg_publisher_t* pub; // указатель на объект публикатор
uint32_t state; // Сюда будет записан статус

result = cg_pub_getstate(pub, &state);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to query publisher state: 0x%X\n", result);
 return;
}

switch (state)
{
 case CG_STATE_ERROR: /* ... */
 case CG_STATE_CLOSED: /* ... */
}

2.7.6. cg_pub_getscheme
Получение схемы публикатора выполняется вызовом:

CG_RESULT cg_pub_getscheme(cg_publisher_t* pub, cg_scheme_desc_t** schemeptr);

Параметрами является указатель на объект публикатора и указатель на переменную, в которую будет записан указатель на опи-
сание схемы.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Вызов используется для получения схемы данных объекта подписки (подробнее см. раздел Работа со схемами данных). Схема
данных доступна с момента перехода публикатора в состояние ACTIVE. В случае, если при создании публикатора схема данных не
была явно задана, между двумя сессиями работы с подпиской схема может измениться, т.е. в общем случае нельзя рассчитывать
на то, что в цепочке вызовов open/close, open/close схема после первого open будет аналогична схеме после вызова второго open.
Это может решаться либо указанием клиентской схемы данных, в тех случаях, когда это поддерживается типом подписки, либо
анализом схемы каждый раз в момент прихода события OPEN.

Пример вызова функции:

cg_publisher_t* pub; // указатель на объект публикатор
cg_scheme_desc_t* schemedesc; // Сюда будет записан указатель на описание схемы

result = cg_pub_getscheme(pub, &schemedesc);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to query publisher scheme: 0x%X\n", result);
 return;
}

// напечатать кол-во сообщений в схеме
printf("Number of messages: %d\n", schemedesc->num_messages);

2.7.7. cg_pub_msgnew
Создание нового сообщения для отправки выполняется вызовом:

CG_RESULT cg_pub_msgnew(cg_publisher_t* pub, uint32_t id_type, const void* id, struct cg_msg_t**
msgptr);

Параметрами является указатель на объект публикатора, тип ключа сообщения, указатель на значения ключа сообщения и указа-
тель на переменную, в которую будет записан указатель на созданное сообщение.

Возвращаемые значения:

Клиентский программный интерфейс 27.01.2026

43

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Данный вызов инициализирует сообщение для отправки через данный публикатор. Желаемое сообщение идентифицируется типом
и значением ключа в схеме данных публикатора. Поддерживаются следующие виды ключей:

CG_KEY_INDEX Ключом является номер сообщения в схеме. Параметр id указывает на значение типа uint32_t, в котором хранится
желаемый номер сообщения

CG_KEY_ID Ключом является уникальный числовой идентификатор сообщения в схеме. Параметр id указывает на значение
типа uint32_t, в котором хранится желаемый идентификатор сообщения

CG_KEY_NAME Ключом является имя сообщения в схеме. Параметр id указывает на строку, в которой записано имя желаемого
сообщения. Строка должна завершаться нулём.

Сообщение, создаваемое данной функцией, является сообщением типа CG_MSG_DATA и описывается расширенной структурой:

struct cg_msg_data_t
{
 // Тип сообщения. Всегда CG_MSG_DATA для данного сообщения
 uint32_t type;
 // Размер данных
 size_t data_size;
 // Указатель на данные
 void* data;

 // Номер описания сообщения в активной схеме
 size_t msg_index;
 // Уникальный идентификатор типа сообщения
 uint32_t msg_id;
 // Имя сообщения в активной схеме
 const char* msg_name;

 // Пользовательский номер сообщения
 uint32_t user_id;
 // Адрес противоположной стороны
 const char* addr;
 // Указатель на связанное сообщение
 struct cg_msg_data_t* ref_msg;
};

Поле data_size содержит размер выделенного блока памяти для запрошенного формата сообщения, а поле data указывает на
этот блок памяти. Поля msg_index, msg_id и msg_name заполнены данными в соответствие с используемой схемой данных. Поле
user_id может быть использовано для задания пользовательского номера сообщения - этот же user_id будет указан в ответном
сообщении, что позволяет связать запрос и ответ.

Пользовательский код должен сверить размер блока в поле data_size, выделенного для сообщения со своими ожиданиями отно-
сительно размера этого блока с целью избежать ошибок с заполнением сообщения. Затем следует заполнить блок по указателю
data данными. После этого сообщение готово к отправке.

Пример вызова функции:

cg_publisher_t* pub; // указатель на объект публикатор
cg_msg_data* msg;

result = cg_pub_msgnew(pub, CG_KEY_NAME, "DelOrder", &msg);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to allocate message: 0x%X\n", result);
}
else
{
 DelOrder* delord;
 if (msg->data_size != sizeof(*delord))
 {
 fprintf(stderr, "Block sizes do not match: %d expected, but got %d \n",
 sizeof(*delord), msg->data_size);
 }
 else
 {

Клиентский программный интерфейс 27.01.2026

44

 delord = (DelOrder*)msg->data;
 delord->order_id = ...; // номер удаляемой заявки

 result = cg_pub_post(pub, msg, CG_PUB_NEEDREPLY);
 if (result != CG_ERR_OK)
 {
 fprintf(stderr, "Failed to post message: 0x%X\n", result);
 }
 }
}

2.7.8. cg_pub_post
Отправка сообщения выполняется вызовом:

CG_RESULT cg_pub_post(cg_publisher_t* pub, struct cg_msg_t* msg, uint32_t flags);

Параметрами является указатель на объект публикатора, указатель на сообщение и флаги отправки сообщения.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Предпринята попытка отправить сообщение в то время, как соединение не активно.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Вызов предпринимает попытку отправки сообщения. Сообщение для отправки должно быть предварительно инициализирова-
но вызовом cg_pub_msgnew и заполнено данными пользователя. В качестве флага обязательно следует указывать значение
CG_PUB_NEEDREPLY, что информирует систему о необходимости ожидания ответа на отправленное сообщение. Для сообщений,
которые не подразумевают получение ответа (например, COD_HEARTBEAT), в качестве флага рекомендуется указывать значение
0.

Ответные сообщения могут быть получены с помощью подписки типа p2mqreply, подробнее см. описание функции cg_lsn_new.

Пример вызова функции:

cg_publisher_t* pub; // указатель на объект публикатор
cg_msg_data* msg; // указатель на инициализированное сообщение

result = cg_pub_post(pub, msg, CG_PUB_NEEDREPLY);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to post message: 0x%X\n", result);
}
cg_pub_msgfree(pub, msg);

2.7.9. cg_pub_msgfree
Освобождение сообщения выполняется вызовом:

CG_RESULT cg_pub_msgfree(cg_publisher_t* pub, struct cg_msg_t* msg);

Параметрами является указатель на объект публикатора и указатель на сообщение, которое требуется освободить.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INTERNAL Внутренняя ошибка. Может свидетельствовать о нарушении конфигурации или среды исполнения.
Для более подробной диагностики следует обратиться к анализу журналов библиотеки.

Вызов уничтожает ранее выделенное сообщение. После вызова данной функции сообщение, на которое указывает параметр msg
становится недоступным для дальнейшего использования и все ресурсы, связанные с ним, освобождаются. Функция должна быть
вызвана для любого сообщения, созданного функций cg_pub_msgnew после того, как сообщение было отправлено и работа с ним
завершена.

Клиентский программный интерфейс 27.01.2026

45

Пример вызова функции:

cg_publisher_t* pub; // указатель на объект публикатор
cg_msg_data* msg; // указатель на инициализированное сообщение

result = cg_pub_msgfree(pub, msg);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to post message: 0x%X\n", result);
}

2.8. Логирование
Функции логирования предназначены для вывода в лог форматной строки или обычной строки.

2.8.1. cg_log_trace
Печатает в лог форматную строку с trace сообщением аналогично функции sprintf языка С. Выполняется вызовом:

CG_RESULT CG_APIcg_log_trace(const char*fmt, ...);

где fmt - строка языка C с форматными символами, которая оканчивается нулём. Подробнее - см. информацию о функции sprintf
языка C.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы (fmt = 0).

CG_ERR_INCORRECTSTATE Не был вызван cg_env_open.

Пример вызова функции:

int i =10;
cg_log_trace("Print test int: %d ", i);
std::string s("test str");
cg_log_trace("Print test str: %s ", s.c_str());

2.8.2. cg_log_debug
Печатает в лог форматную строку с debug сообщением аналогично функции sprintf языка С. Выполняется вызовом:

CG_RESULT CG_APIcg_log_debug(const char*fmt, ...);

где fmt - строка языка C с форматными символами, которая оканчивается нулём. Подробнее - см. информацию о функции sprintf
языка C.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы (fmt = 0).

CG_ERR_INCORRECTSTATE Не был вызван cg_env_open.

Пример вызова функции:

int i =10;
cg_log_debug("Print test int: %d ", i);
std::string s("test str");
cg_log_debug("Print test str: %s ", s.c_str());

2.8.3. cg_log_info
Печатает в лог форматную строку с информационным сообщением аналогично функции sprintf языка С. Выполняется вызовом:

CG_RESULT CG_APIcg_log_info(const char*fmt, ...);

Клиентский программный интерфейс 27.01.2026

46

где fmt - строка языка C с форматными символами, которая оканчивается нулём. Подробнее - см. информацию о функции sprintf
языка C.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы (fmt = 0).

CG_ERR_INCORRECTSTATE Не был вызван cg_env_open.

Пример вызова функции:

int i =10;
cg_log_info("Print test int: %d ", i);
std::string s("test str");
cg_log_info("Print test str: %s ", s.c_str());

2.8.4. cg_log_error
Печатает в лог форматную строку с сообщением об ошибке аналогично функции sprintf языка С. Выполняется вызовом:

CG_RESULT CG_APIcg_log_error(const char*fmt, ...);

где fmt - строка языка C с форматными символами, которая оканчивается нулём. Подробнее - см. информацию о функции sprintf
языка C.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы (fmt = 0).

CG_ERR_INCORRECTSTATE Не был вызван cg_env_open.

Пример вызова функции:

int i =10;
cg_log_error("Print test int: %d ", i);
std::string s("test str");
cg_log_error("Print test str: %s ", s.c_str());

2.8.5. cg_log_tracestr
Печатает в лог строку с trace сообщением. Выполняется вызовом:

CG_RESULT CG_APIcg_log_tracestr(const char*str);

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Не был вызван cg_env_open.

Пример вызова функции:

int i =10;
cg_log_tracestr("Print test int);
std::string s("test str");
cg_log_tracestr("Print test str);

2.8.6. cg_log_debugstr
Печатает в лог строку с debug сообщением. Выполняется вызовом:

CG_RESULT CG_APIcg_log_debugstr(const char*str);

Возвращаемые значения:

Клиентский программный интерфейс 27.01.2026

47

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Не был вызван cg_env_open.

Пример вызова функции:

int i =10;
cg_log_debugstr("Print test int);
std::string s("test str");
cg_log_debugstr("Print test str);

2.8.7. cg_log_infostr
Печатает в лог строку с информационным сообщением. Выполняется вызовом:

CG_RESULT CG_APIcg_log_infostr(const char*str);

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Не был вызван cg_env_open.

Пример вызова функции:

int i =10;
cg_log_infostr("Print test int);
std::string s("test str");
cg_log_infostr("Print test str);

2.8.8. cg_log_errorstr
Печатает в лог строку с сообщением об ошибке. Выполняется вызовом:

CG_RESULT CG_APIcg_log_errorstr(const char*str);

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_INCORRECTSTATE Не был вызван cg_env_open.

Пример вызова функции:

int i =10;
cg_log_errorstr("Print test int);
std::string s("test str");
cg_log_errorstr("Print test str);

2.9. Объекты протокола p2sys
Для аутентификации пользователя в системе Plaza-II в Cgate предусмотрен специальный протокол соединения p2sys. Данный
протокол содержит в себе три объекта: соединение, подписчик и публикатор. Рассмотрим подробнее каждый из них.

2.9.1. Соединение p2sys
Соединение p2sys является особым видом соединения к роутеру Plaza-II, предназначеным только для отправки аутентификаци-
онных запросов и получения ответов на них. Соединение может быть создано и установлено следующим образом:

cg_conn_t* conn;

result = cg_conn_new("p2sys://127.0.0.1:4001;app_name=test_p2sys", &conn);

result = cg_conn_open(conn, 0);

Закрытие соединения происходит стандартным способом:

Клиентский программный интерфейс 27.01.2026

48

conn_close(conn);

2.9.2. Подписчик p2sys
Подписчик p2sys отвечает за статус соединения с роутером Plaza-II и оповещает пользователя о его изменении. Каждому статусу
соответствует сообщение типа CG_MSG_DATA с уникальным msgid.

Статусы соединения с роутером делятся на 2 категории:

• статус соединения: показывает состояние соединения клиента с роутером. Если соединение установлено, подписчик получает
статус ConnectionConnected (msgid = 3), иначе - ConnectionDisconnected (msgid = 4);

• статус роутера: признак аутентификации пользователя в системе. Сначала подписчик получает статус RouterDisconnected
(msgid = 2). Если клиент отправил правильные данные аутентификации, подписчик получает статус RouterConnected (msgid =
1), иначе - LogonFailed (msgid = 5). Если в ini-файле роутера указаны правильные имя пользователя и пароль, роутер сразу
принимает статус RouterConnected.

Создание и открытие подписчика происходит следующим образом:

listener_t* lsn = 0;

result = lsn_new(conn, "p2sys://;name=p2sys_lsn", &MessageCallback, 0, &lsn);

result = lsn_open(lsn, 0);

где функция обратного вызова MessageCallback содержит обработчик приходящих сообщений.

Закрывается подписчик следующим образом:

lsn_close(lsn);

2.9.3. Публикатор p2sys
Публикатор p2sys предназначен для отправки запросов аутентификации или выхода из системы. Публикатор может отправлять
2 вида сообщения типа CG_MSG_DATA:

• RouterLogin (msgid = 1). Запрос на аутентификацию. В поле данных содержит строку в формате "USERNAME=
%имя_пользователя%;PASSWORD=%пароль%"

• RouterLogout (msgid = 2). Запрос на отключение. Не содержит каких-либо данных.

Создание и открытие публикатора происходят следующим образом:

publisher_t* pub = 0;

result = pub_new(conn, "p2sys://;name=p2sys_pub", &pub);

result = pub_open(pub, 0);

Закрытие публикатора происходит стандартным способом:

pub_close(pub);

2.10. Вспомогательные функции

2.10.1. cg_bcd_get
Функция позволяет получить BCD-число в виде двух компонент - целой части и положения десятичной точки.

CG_RESULT cg_bcd_get(void* bcd, int64_t* intpart, int8_t* scale);

В качестве параметров функция принимает указатель на число в BCD-формате bcd, указатель на переменную, в которую будет
помещено значение числа в виде целого и указатель на переменную, в которую будет помещено положение десятичной точки
относительно конца числа.

Например, для исходного числа 123.45 функция запишет в переменную intpart значение 12345, а в переменную scale значение 2.

Важно
Максимальное количество знаков, представимых в виде 64-х битного целого равно 19-ти. Для получения значений BCD-
чисел, по размерности превосходящих 19 знаков, следует использовать вызов cg_getstr для представления чисел в виде
строк.

Клиентский программный интерфейс 27.01.2026

49

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_OVERFLOW Переданное число слишком велико для представления в виде 64-х битного целого.

Пример вызова функции:

void* bcd; // указатель на BCD-число
int64_t value; // сюда будет записано число в виде целого
int8_t scale; // сюда будет записано положение точки

result = cg_bcd_get(bcd, &value, &scale);
if (result != CG_ERR_OK)
{
 fprintf(stderr, "Failed to convert decimal: 0x%X\n", result);
}

// напечатать значение в виде числа с плавающей точкой
printf("Value is: %f\n", (double)value/pow(10.0, scale));

2.10.2. cg_getstr
Функция позволяет получить строковое представление произвольного типа.

CG_RESULT cg_getstr(char* type, void* data, char* buffer, size_t* buffer_size);

В качестве параметров функция принимает тип поля в формате Plaza-2 (см. раздел Работа со схемами данных) в виде строки type,
указатель на место в памяти, где содержится значение data, указатель на буфер, куда будет записано строковое представление
buffer и указатель на переменную, которая содержит размер буфера buffer_size.

В случае, если размер буфера слишком мал для записи строкового представления, функция вернет код ошибки
CG_ERR_BUFFERTOOSMALL и запишет в buffer_size требуемый размер буфера.

При возврате CG_ERR_OK в параметр buffer_size помещается количество символов, записанных в буфер.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_BUFFERTOOSMALLПереданный буфер слишком мал для строкового представления типа.

CG_ERR_INCORRECTSTATE Окружение не инициализировано.

Пример вызова функции:

void* bcd; // указатель на BCD-число

char buf[32];
size_t bufsize = sizeof(buf);

result = cg_getstr("d26.2", bcd, buf, &bufsize);
if (result == CG_ERR_BUFFERTOOSMALL)
{
 char* buf2 = new char[bufsize];
 result = cg_getstr("d26.2", bcd, buf2, &bufsize);
 if (result != CG_ERR_OK)
 fprintf(stderr, "Failed to convert value: 0x%X\n", result);
 else
 printf("Value is %s\n", buf2);
 delete[] buf2;
}
else
if (result == CG_ERR_OK)
{
 printf("Value is %s\n", buf);
}
else

Клиентский программный интерфейс 27.01.2026

50

{
 fprintf(stderr, "Failed to convert value: 0x%X\n", result);
}

2.10.3. cg_msg_dump
Функция позволяет получить текстовый дамп произвольного сообщения.

CG_RESULT cg_msg_dump(struct cg_msg_t* msg, struct cg_scheme_desc_t* schemedesc, char* buffer, size_t*
buffer_size);

В качестве параметров функция принимает указатель на сообщение msg, указатель на описание схемы schemedesc, указатель на
буфер, куда будет записан текстовый дамп buffer и указатель на переменную, которая содержит размер буфера buffer_size.

В случае, если размер буфера слишком мал для записи строкового представления, функция вернет код ошибки
CG_ERR_BUFFERTOOSMALL и запишет в buffer_size требуемый размер буфера.

Возвращаемые значения:

CG_ERR_OK Успешное выполнение.

CG_ERR_INVALIDARGUMENTФункции были переданы некорректные аргументы.

CG_ERR_BUFFERTOOSMALLПереданный буфер слишком мал для дампа сообщения.

Если параметр schemedesc не равен NULL, то функция предпримет попытку разобрать сообщение с использованием переданной
схемы. Если параметр schemedesc равен NULL или сообщение отсутствует в схеме или его размер не совпадает с указанным в
схеме, функция выведет шестнадцатеричный дамп сообщения.

Эту функцию удобно использовать для отладки.

Пример вызова функции:

cg_msg_t* msg; // указатель на сообщение
size_t bufsize = 0;

result = cg_msg_dump(msg, 0, 0, &bufsize);
if (result == CG_ERR_BUFFERTOOSMALL)
{
 char* buf = new char[bufsize];
 result = cg_msg_dump(msg, 0, buf, &bufsize);
 if (result != CG_ERR_OK)
 {
 fprintf(stderr, "Failed to dump message: 0x%X\n", result);
 }
 else
 {
 printf("%s\n", buf);
 }
 delete[] buf;
}
else
 fprintf(stderr, "Failed to dump message: 0x%X\n", result);

Клиентский программный интерфейс 27.01.2026

51

3. Описание инструментария
3.1. Утилита schemetool

Утилита schemetool предназначена для работы со схемами данных.

В настоящее время поддерживается функция формирования структур данных на языках программирования, соответствующих
формату сообщений потоков данных.

3.1.1. makesrc - генерация структур

Режим makesrc предназначен для формирования исходного кода с описанием структур сообщений. Полученные структуры могут
быть использованы для доступа к полям сообщений.

Формирование схемы производится следующим вызовом:

schemetool makesrc [options] [SOURCE SCHEME]

, где:

SOURCE Источник схемы. Описание схемы может быть получено из INI-файла, в этом случае в качестве SOURCE следу-
ет передать путь к ini-файлу. Также схема может быть получена из потока репликации - в этом случае в качестве
SCHEME_SOURCE надо передать два параметра: --conn CONN_STR --stream STREAM_NAME; при этом CONN_STR за-
даёт строку соединения с роутером P2MQRouter в формате URL, а STREAM_NAME задаёт имя интересующего потока
репликации

SCHEME Имя интересущей схемы; должно задаваться явно.

а options - это параметры:

-o, --output -o FILENAME

Имя выходного файла. В этот файл будут записаны результаты работы утилиты. В случае,
если данный параметр не указан, будет использован стандартный вывод stdout.

-O, --output-format --output-format FORMAT

Формат описания структур. В настоящее время поддерживаются следующие форматы:

• c - структуры на языке C

• java - классы для Java

• cs - классы для C#

• pas - структуры на Pascal

• ini - вывод

--key Пользовательский ключ сертификации.

--verbose, -v Выводить логи.

--stream Название потока по которому нужно получить вывод

--lsn URL listener, по которому нужно получить вывод.

--conn URL соединения с роутером Plaza II.

--tables Список таблиц, которые должны быть в output.

--load Загрузить плагин Cgate, который реализует дополнительные lsn и pub.

--scheme_name Задаёт название схемы для потока.

-Dgen-table-prefix=1 Используется для формата "c". Указание данного ключа приведет к тому, что к названиям
структур сообщений будут добавлены префиксы - названия схем сообщений. Этот режим
может использоваться для того, чтобы избежать конфликтов имен при использовании не-
скольких схем в одном INI-файле в том случае, если в разных схемах существуют сооб-
щения с одинаковыми именами.

-Dgen-namespaces=1 Используется для форматов "c" и "cs". Указание данного ключа приведет к формированию
namespace с именем схемы для каждой из схем INI-файла. Может быть использовано для

Клиентский программный интерфейс 27.01.2026

52

разрешения конфликта имен как альтернатива предыдущему варианту, если для компи-
ляции ПО применяется компилятор C++.

-Dgen-typedef=1 Генерирует typedef для каждой таблицы

-Dgen-scheme-string=1 Генерировать строковое представление схемы

-Dc-wchar-type=TYPE Задать тип TYPE для wchar_t строк

-Djava-class-name=CLASSNAME Используется для формата "java". Позволяет задать имя генерируемого класса Java верх-
него уровня.

-Djava-user-package=PACKAGE Используется для формата "java". Позволяет задать имя пакета Java для генерируемого
класса.

-Djava-time-format=date Используется для формата "java". Поля, содержащие значения типа дата-время, будут
сконвертированы в java.util.Date (по умолчанию)

-Djava-time-format=long Используется для формата "java". Поля, содержащие значения типа дата-время, будут
сконвертированы в значение типа long, содержащее кол-во миллисекунд прошедшее с
00:00:00 1.01.1970 г.

-Djava-bcd-format=bigdecimal Используется для формата "java". Поля, содержащие значения типа BCD, будут сконвер-
тированы в java.math.BigDecimal (по умолчанию)

-Djava-bcd-format=long Используется для формата "java". Поля, содержащие значения типа BCD, будут сконвер-
тированы в long

-Dnet-user-namespace=NAMESPACE Используется для формата "cs". Позволяет задать имя пространства имен .NET для гене-
рируемого класса.

-Dnet-time-format=datetime Используется для формата "cs". Поля, содержащие значения типа дата-время, будут скон-
вертированы в DateTime (по умолчанию)

-Dnet-time-format=long Используется для формата "cs". Поля, содержащие значения типа дата-время, будут
сконвертированы в значение типа long, содержащее кол-во миллисекунд прошедшее с
00:00:00 1.01.1970 г.

-Dnet-bcd-format=decimal Используется для формата "cs". Поля, содержащие значения типа BCD, будут сконверти-
рованы в decimal (по умолчанию)

-Dnet-bcd-format=long Используется для формата "cs". Поля, содержащие значения типа BCD, будут сконверти-
рованы в long

Примеры использования утилиты:

schemetool makesrc -o futinfo.h forts_scheme.ini FUTINFO

- этот пример формирует в файле futinfo.h описания структур на языке C схемы FUTINFO из файла forts_scheme.ini.

schemetool makesrc -o futinfo.pas --output-format pas forts_scheme.ini FUTINFO

- этот пример формирует в файле futinfo.pas описания структур на языке Pascal схемы FUTINFO из файла forts_scheme.ini.

schemetool makesrc -o futinfo.h --output-format c \
 --conn p2tcp://localhost:4001;app_name=stool \
 --stream FORTS_REFDATA_REPL \
 --scheme_name FutInfo

- этот пример формирует в файле futinfo.h описания структур на языке C схемы данных потока FORTS_REFDATA_REPL, доступного
через соединение с роутером Plaza-2, запущенным на этой же машине на порту 4001.

schemetool makesrc -o messages.h forts_messages.ini message

- этот пример формирует в файле messages.h описания структур сообщений торговой системы SPECTRA из файла
forts_messages.ini

schemetool makesrc -o futinfo2.h --output-format c --conn "p2tcp://localhost:4001;
app_name=stool" --lsn p2repl://FORTS_REFDATA_REPL

- Этот пример формирует в файле futinfo2.h URL соединения с роутером Plaza II и URL listener.

schemetool makesrc --load cgate_micexd.dll -v --output-format ini --conn "tsmr://172.20.194.99;
snapshotinterval=5000;interval=10;
roundrobin=1;SERVER=INETCUR_GATEWAY;SERVICE=inetcur_gateway;USERID=XXXX;INTERFACE=IFC_Broker18;
LOGGING=4,0;SYNCTIME=0;CACHEFOLDER=.\cache" --lsn "data://;pricefieldtype=d16.6" --output res.ini

- Этот пример загружает plugin Cgate для реализации дополнительных lsn и pub.

Клиентский программный интерфейс 27.01.2026

53

3.2. Утилита change_password
Утилита change_password предназначена для изменения пароля пользователя в торговой системе. Утилита использует протокол
p2mqpwd, который описан в разделе "Объекты протокола изменения пароля". Изменение пароля производится следующим вызо-
вом:

change_password [options]

где options - это параметры:

--app_name имя приложения. Необязательный параметр;

--local_pass пароль для локального соединения с роутером. Необязательный параметр;

--host ip-адрес роутера. Необязательный параметр, значение по умолчанию 127.0.0.1;

--port порт роутера. Необязательный параметр. Значение по умолчанию 4001;

--ini ини-файл с настройками логирования. Необязательный параметр. Если ини-файл не задан, результат операции
выводится на консоль.

Утилита возвращает 0 в случае успешного выполнения команды смены пароля и 1 в случае неуспеха.

Пример запуска утилиты:

change_password --port=4001

Клиентский программный интерфейс 27.01.2026

54

4. Описание API для Java, .NET
4.1. Описание

В поставку P2 CGate входят следующие интерфейсные библиотеки:

• cgate_java

Библиотека, реализующая интерфейс с платформой Javа

• cgate_net

Библиотека, реализующая интерфейс с платформой .NET

4.1.1. API CGate для Java
Поддержка CGate для Java реализуется с помощью интерфейса JNI. В поставку P2 CGate входят следующие компоненты, отно-
сящиеся к поддержке Java:

• интерфейсная библиотека cgate_jni (cgate_jni.dll для Windows, libcgate_jni.so для Linux; каталог SpectraCGate/bin)

• библиотека классов Java cgate.jar (каталог SpectraCGate/SDK/lib)

• примеры использования P2 CGate на Java (каталог SpectraCGate/SDK/samples/java)

Для использования P2 CGate из Java нужно:

• использовать библиотеку cgate.jar при компиляции проекта

• при запуске проекта

○ иметь cgate.jar в classpath

○ иметь библиотеку cgate_jni в пути, используемом для загрузки динамических библиотек (задаётся свойством java.library.path)

○ иметь набор библиотек P2 CGate доступным для загрузки (содержимое каталога SpectraCGate/bin)

Существует возможность явного указания используемой библиотеки cgate_jni и пути к ней с помощью следующих свойств:

• ru.micexrts.cgate.name

Задаёт имя файла библиотеки

• ru.micexrts.cgate.path

Задаёт каталог, в котором находится файл библиотеки

Например:

java -cp .;lib/cgate.jar -Dru.micexrts.cgate.name=libcgate_jni.so.1 -Dru.micexrts.cgate.path=. MyApp

В этом примере запускается приложение пользователя из класса MyApp, при этом используется библиотека cgate.jar из подкаталога
lib; интерфейсная библиотека cgate_jni будет взята из файла ./libcgate_jni.so.1.

4.1.2. API CGate для .NET
Поддержка CGate для платформы .NET реализована с помощью С++/CLI. В поставку P2 CGate входят следующие компоненты,
относящиеся к поддержке .NET:

• сборка cgate_net.dll (каталог SpectraCGate/bin)

• примеры использования P2 CGate на .NET (каталог SpectraCGate/SDK/samples/net)

Для использования P2 CGate из .NET нужно:

• использовать сборку cgate_net.dll при компиляции проекта

• при запуске проекта

○ иметь cgate_net.dll доступной для загрузки платформой .net

○ иметь набор библиотек P2 CGate доступным для загрузки (содержимое каталога SpectraCGate/bin)

Важно
Запуск библиотеки cgate_net под платформой Mono не поддерживается.

Клиентский программный интерфейс 27.01.2026

55

4.2. Объект Cgate
Объект Cgate обеспечивает инициализацию рабочего окружения (см. Запуск и остановка окружения).

Описание Java .NET Функция CGate API

Открытие соединения CGate.open(String settings) CGate.Open(String settings) cg_env_open

Закрытие соединения CGate.close() CGate.Close() cg_env_close

4.3. Объект Connection
Объект Connection обеспечивает доступ к набору функцию соединения (см. Соединение).

Описание Java .NET Функция CGate API

Создание объекта соединения Connection(String settings) Connection(string settings) cg_conn_new

Уничтожение объекта соедине-
ния

void dispose() void Dispose() cg_conn_destroy

Открытие соединения void open(String settings) void Open(string settings) cg_conn_open

Закрытие соединения void close() void Close() cg_conn_close

Обработка сообщений соеди-
нения

void process(int timeout) void Process(int timeout) cg_conn_process

Получение состояние соедине-
ния

int getState() State cg_conn_getstate

Важно
После завершения работы с соединением должен быть вызван метод, который явным образом освобождает ресурсы,
связанные с соединением.

4.3.1. Конструктор Connection
Инициализирует новый экземпляр класса.

Синтаксис Java:

public Connection(String settings) throws CGateException

Синтаксис C#:

public Connection(string settings)

Где:

settings Строка инициализации соединения (см. cg_conn_new)

Возможные исключения:

CGateException Ошибка создания соединения

4.3.2. Метод Connection.dispose
Очистка ресурсов соединения выполняется вызовом соответствующих методов.

Синтаксис Java:

public void dispose() throws CGateException

Синтаксис C#:

public void Dispose()

Возможные исключения:

CGateException Ошибка уничтожения соединения

4.3.3. Метод Connection.open
Открытие соединения выполняется вызовом метода open().

Клиентский программный интерфейс 27.01.2026

56

Синтаксис Java:

public void open(String settings) throws CGateException

Синтаксис C#:

public void Open(string settings)

Возможные исключения:

CGateException Ошибка открытия соединения

4.3.4. Метод Connection.close
Открытие соединения выполняется вызовом метода close().

Синтаксис Java:

public void close() throws CGateException

Синтаксис C#:

public void close()

Возможные исключения:

CGateException Ошибка закрытия соединения

4.3.5. Метод Connection.process
Обработка сообщений соединения выполняется вызовом метода process().

Синтаксис Java:

public int process(int timeout)

Синтаксис C#:

public int Process(int timeout)

Возможные исключения: отсутсвуют

Возвращаемые значения:

CG_ERR_OK Успешное завершение операции

CG_ERR_INVALIDSTATE Недопустимое состояние соединения

CG_ERR_INTERNAL Внутренняя ошибка

4.3.6. Свойство Connection.state
Обработка сообщений соединения выполняется вызовом метода state().

Синтаксис Java:

public int getState() throws CGateException

Синтаксис C#:

public State State { get; }

Возможные исключения:

CGateException Ошибка закрытия соединения

Возвращаемые значения:

CLOSED Соединение закрыто

ERROR Соединение в состоянии ошибки

OPENING Соединение в процессе открытия

ACTIVE Соединение активно

Клиентский программный интерфейс 27.01.2026

57

4.4. Объект Listener
Объект Listener обеспечивает доступ к набору функций подписчика (см. Подписчик).

Описание Java .NET Функция CGate API

Создание объекта подписчика Listener(Connection conn, String
settings, ISubscriber subscriber)

Listener(Connection conn, string
settings)

cg_lsn_new

Уничтожение объекта подпис-
чика

void dispose() void Dispose() cg_lsn_destroy

Открытие подписчика void open(String settings) void Open(string settings) cg_lsn_open

Закрытие подписчика void close() void Close() cg_lsn_close

Получение состояние соедине-
ния

int getState() State cg_lsn_getstate

Получение схемы подписчика int getScheme() Scheme cg_lsn_getscheme

Установка обработчика - Handler -

Важно
После завершения работы с подписчиком должен быть вызван метод dispose(), который явным образом освобождает
ресурсы, связанные с подписчиком.

4.4.1. Конструктор Listener
Инициализирует новый экземпляр класса.

Синтаксис Java:

public Listener(Connection conn, String settings, ISubscriber subscriber) throws CGateException

Синтаксис C#:

public Listener(Connection conn, string settings)

Где:

conn Соединение, в привязке к которому создаётся подписчик

settings Строка инициализации подписки (см. cg_lsn_new)

subscriber Пользовательский обработчик сообщений (только Java; для .NET следует использовать свойства Handler)

Возможные исключения:

CGateException Ошибка создания подписки

Для Java параметр subscriber указывает на экземпляр класса, реализующего интерфейс ISubscriber:

public interface ISubscriber {

 public int onMessage(Connection conn, Listener listener, Message message);
}

При возникновении какого либо события подписчика, например, приход нового сообщения или изменение состояния подписчика,
будет вызван метод onMessage объекта, переданного в параметре subscriber.

В качестве параметров будут переданы:

conn Соединение, к которому привязан подписчик

listener Подписчик, в котором произошло событие

msg Сообщение

Для .NET параметр subscriber отсутсвует; вместо него введено специальное свойтство Handler, которое позволяет устанавливать
обработчик сообщений естественным для среды .NET образом.

4.4.2. Метод Listener.dispose
Очистка ресурсов подписчика выполняется вызовом метода dispose().

Клиентский программный интерфейс 27.01.2026

58

Синтаксис Java:

public void dispose() throws CGateException

Синтаксис C#:

public void Dispose()

Возможные исключения:

CGateException Ошибка уничтожения подписчика

4.4.3. Метод Listener.open
Предпринимает попытку открытия подписчика.

Синтаксис Java:

public void open(String settings) throws CGateException

Синтаксис C#:

public void Open(string settings)

Возможные исключения:

CGateException Ошибка открытия подписчика

4.4.4. Метод Listener.close
Закрывает подписку.

Синтаксис Java:

public void close() throws CGateException

Синтаксис C#:

public void close()

Возможные исключения:

CGateException Ошибка закрытия подписчика

4.4.5. Свойство Listener.State
Возвращает текущее состояние подписчика.

Синтаксис Java:

public int getState() throws CGateException

Синтаксис C#:

public State State { get; }

Возможные исключения:

CGateException Ошибка получения состояния подписчика

Возвращаемые значения:

CLOSED Подписчик закрыт

ERROR Подписчик в состоянии ошибки

OPENING Подписчик в процессе открытия

ACTIVE Подписчик активен

4.4.6. Свойство Listener.Scheme
Возвращает текущую схему данных подписчика.

Синтаксис Java:

Клиентский программный интерфейс 27.01.2026

59

public Scheme getScheme() throws CGateException

Синтаксис C#:

public Scheme Scheme { get; }

Возможные исключения:

CGateException Ошибка получения схемы данных

Возвращаемое значение - это описание текущей схемы данных подписчика или null, если подписчик работает в режиме без схемы.

Важно
Схема данных подписчика доступна с момента получения сообщения OPEN до момента закрытия подписчика или его
перехода в состояние ошибки.

Важно
Схема данных подписчика может изменяться между двумя событиями CLOSE и OPEN; т.е. после повторного открытия
подписчика, его схема может отличаться от той, которая была действительна во время прошлой сессии активности.

4.4.7. Свойство Listener.Handler
Позволяет устанавливать пользовательский обработчик сообщений подписчика.

Синтаксис C#:

public MessageHandler Handler { get; set; }

Пользовательские обработчики должны соответствовать следующему виду:

delegate int MessageHandler(Connection conn, Listener listener, Message msg);

, где в качестве параметров будут переданы:

conn Соединение, к которому привязан подписчик

listener Подписчик, в котором произошло событие

msg Сообщение

4.5. Объект Publisher
Объект Publisher обеспечивает доступ к набору функций публикатора (см. Публикатор).

Описание Java .NET Функция CGate API

Создание объекта публикатора Publisher(Connection conn,
String settings)

Publisher(Connection conn,
string settings)

cg_pub_new

Уничтожение объекта публика-
тора

void dispose() void Dispose() cg_pub_destroy

Открытие публикатора void open(String settings) void Open(string settings) cg_pub_open

Закрытие публикатора void close() void Close() cg_pub_close

Получение состояния публика-
тора

int getState() State cg_pub_getstate

Получение схемы публикатора int getScheme() Scheme cg_pub_getscheme

Создание сообщения для от-
правки

Message newMessage(int
idType, Object id)

Message
NewMessage(MessageFlag
idType, Object id);

cg_pub_msgnew

Отправка сообщения void post(Message msg, int flags) Message Post(Message msg,
PublisherFlag flags);

cg_pub_post

Важно
После завершения работы с публикатором должен быть вызван метод dispose(), который явным образом освобождает
ресурсы, связанные с публикатором.

Клиентский программный интерфейс 27.01.2026

60

4.5.1. Конструктор Publisher
Инициализирует новый экземпляр класса.

Синтаксис Java:

public Publisher(Connection conn, String settings) throws CGateException

Синтаксис C#:

public Publisher(Connection conn, string settings)

Где:

conn Соединение, в привязке к которому создаётся публикатор

settings Строка инициализации публикатора (см. cg_pub_new)

Возможные исключения:

CGateException Ошибка создания публикатора

4.5.2. Метод Publisher.dispose
Очистка ресурсов публикатора выполняется вызовом метода dispose().

Синтаксис Java:

public void dispose() throws CGateException

Синтаксис C#:

public void Dispose()

Возможные исключения:

CGateException Ошибка уничтожения публикатора

4.5.3. Метод Publisher.open
Предпринимает попытку открытия публикатора.

Синтаксис Java:

public void open(String settings) throws CGateException

Синтаксис C#:

public void Open(string settings)

Возможные исключения:

CGateException Ошибка открытия публикатора

4.5.4. Метод Publisher.close
Закрывает публикатор.

Синтаксис Java:

public void close() throws CGateException

Синтаксис C#:

public void close()

Возможные исключения:

CGateException Ошибка закрытия публикатора

4.5.5. Свойство Publisher.State
Возвращает текущее состояние публикатора.

Клиентский программный интерфейс 27.01.2026

61

Синтаксис Java:

public int getState() throws CGateException

Синтаксис C#:

public State State { get; }

Возможные исключения:

CGateException Ошибка получения состояния публикатора

Возвращаемые значения:

CLOSED Публикатор закрыт

ERROR Публикатор в состоянии ошибки

OPENING Публикатор в процессе открытия

ACTIVE Публикатор активен

4.5.6. Свойство Publisher.Scheme
Возвращает текущую схему данных публикатора.

Синтаксис Java:

public Scheme getScheme() throws CGateException

Синтаксис C#:

public Scheme Scheme { get; }

Возможные исключения:

CGateException Ошибка получения схемы данных

Возвращаемое значение - это описание текущей схемы данных публикатора или null, если публикатор работает в режиме без
схемы.

Важно
Схема данных публикатора может изменяться между двумя событиями CLOSE и OPEN; т.е. после повторного открытия
публикатора, его схема может отличаться от той, которая была действительна во время прошлой сессии активности.

4.5.7. Метод Publisher.newMessage
Создаёт новое сообщение для отправки.

Синтаксис Java:

public void newMessage(int idType, Object id) throws CGateException

Синтаксис C#:

public void NewMessage(MessageFlag idType, Object id)

, где:

idType Тип идентификатора сообщения. Одно из значений:

• KEY_INDEX - параметр id является номером требуемого сообщения в схеме

• KEY_ID - параметр id является уникальным числовым идентификатором требуемого сообщения в схеме

• KEY_NAME - параметр id является строкой - именем требуемого сообщения в схеме

id Идентификатор сообщения (Integer или String, в зависимости от значения параметра idType)

Возможные исключения:

CGateException Ошибка создания сообщения

Созданное сообщение содержит буфер, по размеру соответствующий описанию сообщения в схеме данных.

Клиентский программный интерфейс 27.01.2026

62

4.5.8. Метод Publisher.post
Отправляет сообщение.

Синтаксис Java:

public void post(Message msg, int flags) throws CGateException

Синтаксис C#:

public void Post(Message msg, PublisherFlag flags)

, где:

msg Сообщения для отправки

flags Флаги отправки сообщения. В настоящее время поддерживается единственный флаг NEED_REPLY, который означает
необходимость получения ответа на отправленное сообщение.

Возможные исключения:

CGateException Ошибка отправки сообщения

Отправленное сообщение после вызова метода post() не используется и может быть удалено или использовано для повторной
отправки.

Важно
Объект Publisher может отправлять только те сообщения, которые были созданы этим же экземпляром объекта.

4.6. Объект Message
Объект Message обеспечивает доступ к сообщениям.

Описание Java .NET CGate API

Уничтожение объекта сообще-
ния

void dispose() void Dispose() cg_pub_msgfree

Получение типа сообщения int getType() Type поле type структуры cg_msg_t

Получение буфера с данными ByteBuffer getData() Data поле data структуры cg_msg_t

Получение отладочного пред-
ставления сообщения

String toString() string ToString() cg_msg_dump

Пользователь отвечает за уничтожение созданных им сообщений для отправки явным вызовом метода dispose(). Сообщения,
которые пользователь получает в обработчик подписки не должны уничтожаться, так как владельцем таких сообщений является
библиотека P2 CGate.

4.6.1. Метод Message.dispose
Очистка ресурсов сообщения выполняется вызовом метода dispose().

Синтаксис Java:

public void dispose() throws CGateException

Синтаксис C#:

public void Dispose()

Возможные исключения:

CGateException Ошибка уничтожения сообщения

4.6.2. Свойство Message.Type
Возвращает тип сообщения.

Синтаксис Java:

public int getType()

Синтаксис C#:

public MessageType Type { get; }

Клиентский программный интерфейс 27.01.2026

63

4.6.3. Свойство Message.Data
Возвращает буфер данных сообщения

Синтаксис Java:

public java.nio.ByteBuffer getData()

Синтаксис C#:

public System.IO.UnmanagedMemoryStream Data { get; }

Размер буфера с данными доступен через соответствующий вызов объекта, возвращаемого свойством. Формат буфера соответ-
ствует используемой схеме данных.

Свойство Data может возвращать null - это означает, что сообщение не содержит данных.

4.6.4. Метод Message.toString
Возвращает текстовое представление сообщения.

Синтаксис Java:

public String toString()

Синтаксис C#:

public string ToString()

Данное представление может использоваться в отладочных нуждах.

4.6.5. Типы сообщений
Для более комфортной работы с P2 CGate введены классы, описывающие конкретные типы сообщений. Такие классы содержат
дополнительную информацию. Пользователь может получить доступ к дополнительным свойствам сообщения выполнив преобра-
зования типа объекта (каст), основанное на анализе свойства Message.Type.

4.6.5.1. Объект OpenMessage

Описывает сообщения типа CG_MSG_OPEN - открытие подписчика.

Объект не содержит дополнительных полей.

4.6.5.2. Объект CloseMessage

Описывает сообщения типа CG_MSG_CLOSE - закрытие подписчика.

Описание Java .NET CGate API

Причина закрытия объекта int getReason() Reason CloseReason() -

4.6.5.3. Объект DataMessage

Описывает сообщения типа CG_MSG_DATA - сообщение с данными.

Дополнительные свойства объекта:

Описание Java .NET CGate API

Номер сообщения в схеме дан-
ных

int getMsgIndex() MsgIndex поле msg_index структуры
cg_msg_data_t

Числовой идентификатор сооб-
щения в схеме данных

int getMsgId() MsgId поле msg_id структуры
cg_msg_data_t

Имя сообщения в схеме дан-
ных

int getMsgName() MsgName поле msg_name структуры
cg_msg_data_t

Адрес отправителя/получателя
сообщения

string getAddress() Address поле addr структуры
cg_msg_data_t

Пользовательский номер сооб-
щения

int getUserId()/void setUserId(int
val)

UserId поле user_id структуры
cg_msg_data_t

Список полей сообщения Value[] getFields() Fields -

Получение поля по имени Value] getField(String name) Field[string] -

Клиентский программный интерфейс 27.01.2026

64

4.6.5.4. Объект StreamDataMessage

Описывает сообщения типа CG_MSG_STREAM_DATA - сообщение с потоковыми данными.

Дополнительные свойства объекта:

Описание Java .NET CGate API

Номер сообщения в схеме дан-
ных

int getMsgIndex() MsgIndex поле msg_index структуры
cg_msg_streamdata_t

Числовой идентификатор сооб-
щения в схеме данных

int getMsgId() MsgId поле msg_id структуры
cg_msg_streamdata_t

Имя сообщения в схеме дан-
ных

int getMsgName() MsgName поле msg_name структуры
cg_msg_streamdata_t

Номер сообщения в потоке long getRev() Rev поле rev структуры
cg_msg_streamdata_t

Список полей сообщения Value[] getFields() Fields -

Получение поля по имени Value] getField(String name) Field[string] -

4.6.5.5. Объект TnBeginMessage

Описывает сообщения типа CG_MSG_TN_BEGIN - идентифицирует начало транзакции для потоковых данных.

Объект не содержит дополнительных полей.

4.6.5.6. Объект TnCommitMessage

Описывает сообщения типа CG_MSG_TN_COMMIT - идентифицирует завершение транзакции для потоковых данных.

Объект не содержит дополнительных полей.

4.6.5.7. Объект P2MQTimeoutMessage

Описывает сообщения типа CG_MSG_P2MQ_TIMEOUT - сообщение о превышении времени ожидания ответа на отправленное
сообщение.

Дополнительные свойства объекта:

Описание Java .NET CGate API

Пользовательский номер сооб-
щения

int getUserId()/void setUserId(int
val)

UserID поле user_id структуры
cg_msg_data_t

4.6.5.8. Объект P2ReplLifeNumMessage

Описывает сообщения типа CG_MSG_P2REPL_LIFENUM - сообщение об изменении номера жизни схемы данных.

Дополнительные свойства объекта:

Описание Java .NET CGate API

Новый номер жизни схемы дан-
ных

int getLifeNumber() LifeNumber поле life_number структуры
cg_lifenumber_t

Поле flag (зарезервировано) - - -

4.6.5.9. Объект P2ReplClearDeletedMessage

Описывает сообщения типа CG_MSG_P2REPL_CLEARDELETED - сообщение об удалении диапазона данных по указанной табли-
це.

Дополнительные свойства объекта:

Описание Java .NET CGate API

Номер таблицы int getTableIdx() TableIdx поле table_idx структуры
cg_data_cleardeleted_t

Номер ревизии, ниже которого
данные удаляются

long getTableRev() TableRev поле table_rev структуры
cg_data_cleardeleted_t

Клиентский программный интерфейс 27.01.2026

65

Описание Java .NET CGate API

Поле flags для внутреннего ис-
пользования

- - поле flags структуры
cg_data_cleardeleted_t

4.6.5.10. Объект P2ReplOnlineMessage

Описывает сообщения типа CG_MSG_P2REPL_ONLINE - сообщение о переходе потока данных в состояние ONLINE.

Объект не содержит дополнительных полей.

4.6.5.11. Объект P2ReplStateMessage

Описывает сообщения типа CG_MSG_P2REPL_REPLSTATE - сообщение, содержащее состояние потока данных для повторного
открытия.

Дополнительные свойства объекта:

Описание Java .NET CGate API

Данные для переоткрытия по-
тока

String getReplState() ReplState значение *data сообщения

