Moscow Exchange FAST protocol
specification for OTC trades
report system (OTC-monitor)

Version 1.18.0

Moscow 2023

FAST protocol specification (OTC-monitor) 23.01.2023

Table of Contents

OO 1311 (o [0 od o o PN 4
1.1, DOCUMENE PUIPOSE .ttt s ettt et ettt ettt ettt ettt et ettt et ettt e ettt et e ettt et e e et e et e et et e r e e e e e e e 4

1.2. Fast Gate — BasiC INfOMMAtiON ... e ettt e 4

1.2.1. Data Streaming apPrOaCottt e e e 4

2 | o] 1= =T) oL 41T Y= o =T 4

O TR G 0] 12 F= 4

1.2.4. Encoding in the FAST fOrmMatooiitiieiit ettt ettt e ettt et e e et e e et et e 4

1.2.5. Data receiCing Via MUIICAST ..ottt ettt ettt e et et e e e e et e e et e e e e e naeeens 4

B T T - T =T od 0 1Y P 5

2. Scenarios of client interactions with Market Data MUIICAST ..ottt 6
220 I O o 3 T od o 1= o 6

2.2. Incremental Feeds A and B ArbItrationooooiiii 6

BT £ (=Y T 0 Tod 10 0 - 1 /P 8
B V) (=T 44 = 1 111 (1= 8

.11, MaAIN SIrEAMS (UD P .ottt ettt sttt ettt et e et e ettt et e ettt e et e e e e 8

3.1.2. RECOVENY SIrEAMS (UD P) ...ttt ittt ettt ettt ettt et e et et et e et et et et et e e e e e e e e 8

3.1.3. Instrument Definitions Stre@ams (UDP)iiiiiii ittt et e ettt e et e e 9

3.1 4. MESSAGES N SITBAIMS ..ttt ettt ettt et et et ettt ettt ettt e et e e ettt ettt e e e e e e et e e 9

3.1.5. Sessions for requesting MissSing MESSAGES (TCP) ...ttt ittt e et e e e anaes 9

3.2, FAST fOIMAt — GOLAIIS ..ttt ittt ettt et e et et et et e e e 10

00 T 1o o I o1 =T o o 1T 10

10222 | 4] o] Tox 1 i = o o 11T 10

2 T i 1= (o Eo =Y g oo T 13 T o o] 10} o T 10

B B N S Y I (T 0] o] 10

2 ST B =T oo Yo [g To 0N =T 4 1= 11

3.2.6. MESSAGE fragmMIENIatiON ...ttt ettt ettt e et 11

G T A - 1 - W 17/ .= 11

R T |V 1 ES7Y T To 0= L r= (=T 0)Y Y P 11

3.3.1. Recovery missing data using Recovery streams (UDP)cuviiiiiioiie e e e e anaeens 12

3.3.2. Recovering missing data using TCP-CONNECHIONutttt ettt ettt e e e e e e e e e e e aee e annaens 12

O LTSI T T oIS STo [1 1= o] TS = 12

ST |V =TT Vo [T T 0 0] o] = 13

3.5.1. OtcMonitorINCremMentalREf TESNMESSAGE ...\ttt ettt ettt et e et e ettt e e e e 13

3.5.2. OtCMONITOrSNAPSNOIMESSAGE ...ttt ettt ettt ettt et et et e ettt 13

3.5.3. OtCMONItOrSECUNTY DO INMITION ...\ttt ettt ettt et e et e et e e e e et e e et et e e e e eanaes 14

4, FIX protoCol MeSSage SPECIICAtIONSttt ettt ettt ettt ettt et e e et e e 15
T =Y o 00 15

4.1.1. Standard MeSSagE HeaUEriiiii ittt ettt ettt et et e e 15

S = 1 T o N oY= 0 TS U - 15

0 R 0T o 1o T () 15

L oo o 0| A) 15

L T o 1= - a1 - L () 16
Y=o [=Y o I L= Y= 7) 16

4.3, BUSINESS |0gIC @Y B MESSAGES ...\ttt ettt ettt ettt ettt et e e e et e e et et ettt e e e e e et e 16

L 0 Y=o 0 Y/ I 1= 1 11 o T T (o) 16

R V= 14 = Al I = L= W = 18 =) A 7/ 17

4.3.3. Market Data - Snapshot / FUll RefresSh (W) ...t e e e e e e anee s 17

4.3.4. Market Data - Incremental Refresh (X)oiiiii i e e e e e e s 18

5. TCP Recovery (Historical Replay) SErvice Mitationsoiiiioiit et e e et e et e e e e et e v e enaeeens 20

FAST protocol specification (OTC-monitor) 23.01.2023

History of changes

Date

Version

Changes

20.01.2023

1.18.0

1. The FAST specification for the OTC monitor is separated into a separate document.

2. Three new message templates are added for broadcasting data from the OTC-monitor:
» OtcMonitorincrementalRefreshMessage (id="33")
* OtcMonitorSnapshotMessage (id="34")
» OtcMonitorSecurityDefinition (id="35")

3. New attributes were added to Market Data - Snapshot / Full Refresh (W) and Market
Data - Incremental Refresh (X) messages:

» SettlCurrency - Currency of monetary obligation
» CFICode - CFI code of the security with which the trade was made
» TradeVolume - Trade volume, rub.
4. New attributes were added to Security Definition message :
* CFICode - CFI code of the security with which the trade was made

* InList - Including of the security in the quotation list of the Exchange.

FAST protocol specification (OTC-monitor) 23.01.2023

1. Introduction

1.1. Document purpose

This document overviews the FAST protocol specifications for OTC_monitor.

This document does not cover administrative and technical aspects of network connection. Also, this document does not cover security
support aspect.

1.2. Fast Gate — Basic information

The Fast Gate system is used for distributing market data in the FAST-format via the UDP protocol in the multicast mode.

This approach combines the FIX protocol structure and message syntax with the FAST protocol dataflow optimization benefits. Also, it
provides possibilities for fast and reliable data distribution to multiple clients of the UDP ptotocol.

The FAST (FIX Adapted for STreaming) protocol is a FIX based protocol developed by FIX Market Data Optimization Working Group in
order to optimize financial data exchange performance and reduce latency in distributing large amounts of data. Fast Gate uses the protocol
version 1.1: https://www.fixtrading.org/packages/fast-specification-version-1-1.

The FAST Gate for the OTC monitor sends the following data:

* instrument descriptions;

» anonymous data on OTC-trades reports.

1.2.1. Data streaming approach

Using of the data streaming approach allows to transmit data from sender to recepient without breaking it into separate messages. The new
approach allows to combine several events into a single message which leads to higher data transfer speed and reduce latency time.

1.2.2. Incremental messages

Using of incremental messages allows to significantly reduce amount of transmitted data. Only the data changed due to the market events
are transmitted; also, minimal number of commands are used for refreshing data: ‘add new record', ‘change record’, ‘delete record'.

1.2.3. FIX format

The Fast Gate system uses the FIX mesages format and syntax. Each message consists of header, message body and trailer. Fields are
separated with the ASCIlI symbol — <SOH>.

For more information see sec. 4.

1.2.4. Encoding in the FAST format

The FAST (FIX Adapted for STreaming) protocol is the FIX based protocol developed by FIX Market Data Optimization Working Group in
order to optimize financial data exchange performance and reduce latency in distributing large amounts of data.

The following features are used for data compression:

* implicit tagging;

« fields encoding options;

 usage of PMap;

* stop-bit encoding;

» usage of binary encoding method.

In most cases, the FAST format encoding rules are negotiated between counterparties by exchanging XML-templates.

For more information see sec. 3.2.

1.2.5. Data receicing via Multicast

For data distribution, the UDP protocol is used in order to distribute data to more than one client at once.

A single UDP packet may contain several FIX messages in the FAST format. Although, currently the system does not provide a possibility
to send more than one FAST-coded message via a single UDP packet. In order to match the restriction, FAST messages are generated in
a size not bigger then that of the MTU parameter, i.e. 1500 bytes, which is typical for Ethernet networks.

https://www.fixtrading.org/packages/fast-specification-version-1-1

FAST protocol specification (OTC-monitor) 23.01.2023

1.2.6. Data recovery
It is extremely important to clients to be able to recover data instantly in case of any data loss.

Fast Gate provides 2 methods of data recovery:
< recovering big amounts of data by sending snapshots (for example, for the clients connected to the system after the trading session start);

 recovering small amounts of data via TCP-connection (for example, in case of message loss during sending).

FAST protocol specification (OTC-monitor) 23.01.2023

2. Scenarios of client interactions with Market Data Multicast

This section covers different scenarios of clients connection to the Market Data Multicast feeds. Also, this section covers loss data recovery
procedures details.

2.1. Connect client

When client starts listening to MOEX Market Data Multicast FIX/FAST Platform, it should keep the following procedure:

1.

6.

7.

Download the actual multicast IP addresses configuration file from ftp. Configuration file is the XML - file describing the connectivity
parameters (feeds, multicast addresses, ports, etc.).

. Download the FAST template from ftp.
. Receive the instruments list from Instrument Replay feed. Start listening to the Instruments Incremental feed.
. Start listening to the Incremental feeds and queue received data.

. Start listening to the Snapshot feeds. Receive and apply actual market data snapshot. In each Market Data - Snapshot/Full Refresh (W)

tag 369-LastMsgSeqNumProcessed is equal to tag 34-MsgSegNum of the last message Market Data - Incremental Refresh (X) of the
appropriate stream included in the snapshot. The refresh number of each instrument within the tag 83-RptSeq of the message Market
Data - Snapshot/Full Refresh (W) is equal to number of incremental refresh in the tag 83-RptSeq which corresponds to MDEntry of the
last message Market Data - Incremental Refresh (X), included into the snapshot. For each instrument, it is necessary to omit all messages
with numbers through 369-LastMsgSeqNumProcessed tag number and apply all that are left. The procedure can be both sequential
or parallel. l.e., you can either receive snapshots for all instruments and then process the accumulated data or you can process data
after receiving each snapshot.

Stop listening to the Snapshot feeds.

Continue receiving and normal processing incremental data.

2.2. Incremental Feeds A and B Arbitration

Data in all UDP Feeds are disseminated in two identical feeds (A and B) on two different multicast IPs. It is strongly recommended that client
receive and process both feeds because of possible UDP packet loss. Processing two identical feeds allows one to statistically decrease
the probability of packet loss

It is not specified in what particular feed (A or B) the message appears for the first time. To arbitrate these feeds one should use the
message sequence number found in Preamble or in tag 34 - MsgSegNum. Utilization of the Preamble allows one to determine message
sequence number without decoding of FAST message.

Processing messages from feeds A and B should be performed using the following algorithm:

1.

2.

Listen feeds A and B.

Process messages according to their sequence numbers.

. lgnore a message if one with the same sequence number was already processed before.

. If the gap in sequence number appears, this indicates packet loss in both feeds (A and B). Client should initiate one of the Recovery

process. But first of all client should wait a reasonable time, perhaps the lost packet will come a bit later due to packet reordering . UDP
protocol can’ t guarantee the delivery of packets in a sequence .

Example:

Packet | peeda Feed B

1 34-MsgSegNum = 59

2 34-MsgSegNum = 53
3 34-MsgSegNum = 60

4 34-MsgSegNum = 60
5 34-MsgSegNum = 62

6 34-MsgSegMum = 61
T 34-MsgSegNum = 62
3 34-MsgSegNum = 62

9 34-MsgSegNum = 63

10 34-MsgSegNum = 65

11 34-MsgSegNum = 65

FAST protocol specification (OTC-monitor)

23.01.2023

Messages are received from Feed A and Feed B.

1

2.

8.

9.

1

. Receive message # 59 from Feed A, process it.
Receive message #59 from Feed B, discard it, because this message was processed before from Feed A.

. Receive message # 60 from Feed A, process it.

. Receive message # 60 from Feed B, discard it, because this message was processed before from Feed A.

. Receive message # 62 from Feed A, discard it and wait for message #61.
. Receive message # 61 from Feed B, process it.

. Receive message # 62 from Feed B, process it.

Receive message # 63 from Feed A, process it.

OReceive message # 65 from Feed A, discard it and wait for message #64.

11 Receive message # 65 from Feed B, discard it and wait for message #64.

1

2Begin recovery process, because gap is detected. Message #64 is missed.

Receive message # 62 from Feed A, discard it, because this message was processed before from Feed B.

FAST protocol specification (OTC-monitor) 23.01.2023

3. System functionality

3.1. System architecture

UDP channels used to transfer market data from MOEX. UDP channels are also used for recovery process, TCP connection is used to
replay sets of lost messages, already published in one of UDP Channels.

Following feeds are used in the system:
1. Basic:

« Market Data Incremental Refresh feeds;

« Instrument Definition feed;

« Data distribution feed for instrument status change and Trading System connection status.
2. Recovery feeds:

« Market Recovery feed;

« TCP Replay session.

Data are distributed via group of feeds, each of that contain data for financial instrument group. The instruments are grouped by the Trading
System according to particular parameters. The dedicated Market Data Multicast instance is responsible for distribution in each Feed. A
single Market Data Multicast instance is responsible for a single Feed data distribution.

™\

[- T
Market Data Market D::: E "?

|
Market Data Market fo;a Channe
T -

Market Data Channel™,
Market Data 7
[
Market Data annea
= Market Data o

Pic. 1. Market Data distribution feeds

Client

FAST Gate

Each feed is a) a bunch of several UDP-feeds with continuous data distribution; b) TCP-port which is used for requesting messages missed
in the UDP-feed.

All streams are transmitted using the UDP multicast protocol and every stream is transmitted using a dedicated multicast address. The A
and B streams transmit the same data in order to decrease the probability for missing UDP-packets.

Apart from transmitting data in UDP streams, Market Data multicast can accept incoming TCP connections for letting clients request missing
data. Clients can request missing messages using one of the next UDP streams (data are available for a period of time specified in the
configuration file (not earlier than from beginning of the day), number of messages to be sent at one is limited, number of requests per day
is limited, too. All limits are specified in the system configuration file.

3.1.1. Main streams (UDP)

The OTC trades data are distributed in the OTC-TRADES main streams (incr) in the multicast mode with the UDP protocol.

The data are distributed as FIX-messages Market Data - Incremental Refresh (X) coded in the FAST format. Each message may contain
refresh data for several financial instruments.

3.1.2. Recovery streams (UDP)

The Recovery (snap) streams in the multicast mode with the UDP protocol are used to periodically distribute the current snapshot of the
corresponding data as FIX-messages Market Data - Snapshot/Full Refresh (W) coded in the FAST format. Each message contains data
for a single instrument only.

Itis not necessary for clients to be constantly connected to these streams. After receiving the missing data, it is recommended to disconnect
from these streams.

FAST protocol specification (OTC-monitor) 23.01.2023

3.1.3. Instrument Definitions streams (UDP)

The Instrument Replay (inst replay) streams are used to periodically distribute the trading session status and descriptions of financial
instruments as TradingSessionStatus (h) and Security Definition (d) FIX messages coded in the FAST format. Each message contains
description for a single financial instrument. The TradingSessionStatus (h) message is broadcast in FUT-INFO and OPT-INFO streams.
In the Instrument Replay stream, the SequenceReset(4) message marks the start of broadcasting a new snapshot. A spashot consists
of trading instruments descriptions in the form of SecurityDefinition (d) messages and a trading session status TradingSessionStatus (h).
Upon receipt of a full snapshot, it should be considered that all instruments descriptions for a given trading session were received.

OTC-instruments descriptions are transmitted in the OTC-ISSUES stream.

3.1.4. Messages in streams

This section describes which messages are transmitted in each data stream.

Stream name Stream type Message template name
OTC-ISSUES Instrument Replay Heartbeat (id="6")

SequenceReset (id="7")

OtcMonitorSecurityDefinition (id="35")
OTC-TRADES Incremental Heartbeat (id="6")

SequenceReset (id="7")

OtcMonitorincrementalRefreshMessage (id="33")
OTC-TRADES Snapshot Heartbeat (id="6")

SequenceReset (id="7")

OtcMonitorSnapshotMessage (id="34")

OTC-TRADES Historical Replay From client to gateway:

Logon (FIX MessageType="A")

Logout (FIX MessageType="5")

Market Data Request (FIX MessageType="V")
From gateway to client:

Heartbeat (id="6")
OtcMonitorincrementalRefreshMessage (id="33")

Logon (id="1000")

Logout (id="1001")

3.1.5. Sessions for requesting missing messages (TCP)

This service allows to request the resend of missing messages within a specified range of numbers.

The request contains a range of message (numbers) to resend. The request is sent as the Market Data Request (V) FIX-message using the
client-initiated TCP-connection. The respond messages are sent to the client as FIX-messages coded in the FAST format using the same
TCP-connection. Upon completion of sending, Market Data Multicast closes this TCP-connection. Please note, that maximum number of
messages to resend is limited.

The first 4 bytes of each message transmitted in a TCP stream contain its length.

Message PMAP Template Message
length D
\ e — %
W ' W -
4 hytes N bytes N bytes
\ > FAN p g
Message length FAST-message

Pic. 2. Message structure in TCP stream

FAST protocol specification (OTC-monitor) 23.01.2023

When all FAST messages have been sent out, the gateway sends the message Logout to the FAST client, expecting the message Logout
from the client in respond. Finishing FIX session also causes TCP session to close.

Please also note, that this service should be used only when all other methods are unavailable. This service does not provide high perfor-
mance and is not available for streams containing aggregated Book-order data.

3.2. FAST format — details

All messages sent by MOEX Market Data Multicast are in the FIX-format coded in the FAST (FIX Adapted for STreaming) protocol. The
FAST protocol was developed by FIX Market Data Optimization Working Group in order to optimize financial data flow via distributing bigger
amounts of data with less latency.

A specific feature of data distribution via the MOEX Market Data Multicast streams is, that there is a 4-bytes preamble added before every
FAST-message. The preamble contains the 34-th tag (SeqNum) value. The 34-th tag is located right after the preamble.

It allows to receive the message sequence number (both when processing messages from the A and B streams and in case of missing
messages) without decoding the FAST-message itself; this leads to time saving during processing of streams.

Seguence PMAP Template Message
number 1D
v - W f A——" M
4 hytes N hytes N bytes
" 5 v !
Preambl FAST-message

Pic. 3. Message structure

3.2.1. Stop bit encoding

Encoding stop bit is a constitutive procedure of FAST. The coding allows to exclude redundancy on the data field link layer using the stop
bit instead of the standard byte separator. In FAST, stop bit is used instead of the standard FIX-separator (<SOH> byte); therefore, 7 bits
of every byte are used for data transmission while the 8th bit indicates the field end.

3.2.2. Implicit tagging
According to the FIX protocol standards, every message is as: Tag = Value <SOH>, where:
Tag — number of the field, which is now transmitted,;
Value — actual value in this field;
<SOH> — ASCII symbol, used as a separator.
Example:

35=x|268=3 (message header) 279=0|269=2|270=9462.50|271=5|48=800123|22=8 (trade) 279=0|269=0|270=9462.00|271=175|1023=1]
48=800123|22=8|346=15 (new bid 1) 279=0|269=0|270=9461.50|271=133|1023=2|48=800123|22=8|346=12 (new bid 2)

FAST allows to avoid this redundancy by using a template which describes the whole message structure. This method is called 'implicit
tagging', as FIX tags become implicit parts of the transmitted data. FAST-template exchanges the 'Tag=Value' syntax with 'implicit tagging'
according to the following rules:

» tags numbers are not transmitted in message but specified in the template;

« sequence of fields in the message is alike to one of the tags in the template;

« the template specifies a structured bunch of fields with their operators.

3.2.3. Fields encoding options

FAST operates as a state machine, which must 'know" all values to store in memory each moment of time. FAST compares the current field
value with the previous one and decides how to act:

« use the constant specified in the template as a new value;

« use the default value (in case of absence of a new field value).

3.2.4. FAST-template

A FAST template corresponds to the FIX message type and uniquely identifies order of fields in each message.

10

FAST protocol specification (OTC-monitor) 23.01.2023

The template also includes syntax indicating the type of field and transfer decoding to apply. Each FAST message contains template ID
which is used for decoding. The message templates are available at: ftp://ftp.moex.com/pub/FAST/Spectra/ .

3.2.5. Decoding overview

Below is the order of decoding procedure:
1. Transport. A client receives an encoded FAST message.
2. Packet decoding:

« identification of a template;

» withdrawal of binary encoded bits;

» determining correspondences between the received bits and template fields.
3. Fields decoding: using operators to determine value according to the template.
4. Generation of FIX-message.

5. Processing the FIX-message.

3.2.6. Message fragmentation

In order to prevent UDP packets from exceeding MTU size of 1500 bytes (typical for Ethernet networks), messages are fragmented into
several parts.

If the message Market Data - Snapshot / Full Refresh (W) does not contain the tag 893-LastFragment, it means that snapshot was transmitted
as a single message. All fragmented messages except the last one contain the tag 893-LastFragment = 0. The last fragmented messages
contains the tag 893-LastFragment = 1. Therefore, receiving a message with the tag 893-LastFragment = 1 indicates that snapshot has
been completely transmitted.

If the message Market Data - Incremental Refresh (X) does not contain the tag 893-LastFragment, it means that messages have not been
fragmented, and the book is consistent after processing the message. All fragmented messages except the last one contain the tag 893-
LastFragment = 0. The last fragmented messages contains the tag 893-LastFragment = 1. Therefore, receiving a message with the tag
893-LastFragment = 1 indicates that the book is consistent.

3.2.7. Data types

A field within a FAST template will have one of the standard Data Types indicating the required decoding action: ASCII string, Unicode
string, Signed Integer, Unsigned Integer and Decimal. Decimal exponent and mantissa will be encoded as a single, composite field.

FAST does not natively support timestamps. FAST gate will convert the timestamp to an integer value depending on the field type. The
decoding application should convert the integer to the FIX UTC format after decoding. Time is always displayed in UTC.

Samples of timestamps encoding:

FIX Type FIX Pattern Sample FIX value Sample FAST value FAST field type

UTCTimeOnly HH:MM:SS.sssssssss 18:44:24.123456789 184424123456789 ulnt64
(nanoseconds)
HH:MM:SS.sssssssss 07:12:13.012345678 71213012345678 ulnt64
(nanoseconds)

UTCDateOnly YYYYMMDD 20080812 20080812 ulnt32

UTCTimestamp YYYYM- 20080812-18:23:54.213 |20080812182354123 ulnt64
MDD-HH:MM:SS.sss

3.3. Missing data recovery

MOEX Market Data Multicast FIX/FAST Platform disseminates Market Data in all feeds over two UDP subfeeds: Feed A and Feed B. In
Feeds A and B the identical messages are sent. It lowers the probability of packets loss and provides the first level of protection against
missed messages.

Sometimes, messages may be missed on both feeds, requiring a recovery process to take place. Message loss can be detected using
the FIX message sequence numbers (tag MsgSeqNum (34)), which are also found in the Preamble. The message sequence number is
an incrementing number; therefore, if a gap is detected between messages in the tag MsgSegNum (34) value, or the Preamble sequence
number, this indicates a message h as been missed. In addition, tag RptSeq (83) can be used to detect a gap between the messages at the
instrument level. In this case client system should assume that market data maintained in it is no longer correct and should be synchronized
to the latest state using one of the recovery mechanisms.

MOEX Market Data Multicast FIX/FAST Platform offers several options for recovering missed messages and synchronizing client system
to the latest state. Market Recovery process together with Instruments Replay Feed is the recommended mechanism for recovery. TCP
Replay provides less performance mechanism recommended only for emergency recovering of small amount of lost messages when other

11

ftp://ftp.moex.com/pub/FAST/Spectra/

FAST protocol specification (OTC-monitor) 23.01.2023

mechanisms cannot be used for some reason. Instrument level sequencing and natural refresh can be utilized to supplement the recovery
process.

3.3.1. Recovery missing data using Recovery streams (UDP)

This recovery method is preferable to use for large - scale data recovery and for late joiners. Recovery feeds contains Market Data -
Snapshot/Full Refresh (W) messages. The sequence number (LastMsgSeqNumProcessed(369)) in the Market Data - Snapshot/Full Refresh
(W) message corresponds to the sequence number (MsgSeqNum(34)) of the last Market Data - Incremental Refresh (X) message in the
corresponding feed. Instrument level sequence number (RptSeq(83)) in Market Data - Snapshot/Full Refresh (W) message correspond to
the sequence number (RptSeq(83)) in the MDEntry from last Market Data - Incremental Refresh (X) message. Thus, tag MsgSeqNum(34)
shows the gap at the messages level, tag RptSeq(83) shows gap at the instrument level.

After value of RptSeq(83) tag from Market Data - Incremental Refresh (X) becomes more than value of RptSeq(83) tag from Market Data
- Incremental Refresh (X) , market data becomes actual.

After value of MsgSegNum(34) from Market Data - Incremental Refresh (X) message becomes more than value of tag LastMsgSeqNumPro-
cessed(369) from Market Data - Snapshot/Full Refresh (W) message, market data becomes actual.

Messages sequence numbers begins from #1 in Market Data - Snapshot/Full Refresh (W) messages in each cycle.

If a message does not contain the tag 893-LastFragment, it means that snapshot was transmitted as a single message. Otherwise, the
last fragmented messages contains the tag 893-LastFragment = 1. Therefore, receiving a message with the tag 893-LastFragment = 1
indicates that snapshot has been completely transmitted.

Clients should keep queuing real - time data until all missed data is recovered. The recovered data should then be applied prior to data
gueued.

Consequence of recovery is equal to that described in sec. 2.1 (steps 4 - 7).

Since clients have retrieved recovery data, it is recommended to stop listening Market Recovery feeds.

3.3.2. Recovering missing data using TCP-connection

If there any market data missing in incremental streams Indexes, Trades and ORDERS-LOG (anonymous orders and trades), it can be
recovered over the TCP historical replay component using the sequence number range. TCP Replay is a low performance recovery option
and should only be used if other options are unavailable or for small - scale data recovery. Number of messages which can be requested
by client during TCP connection is limited to 1000.

To request missing data, you should do the following:
1. Establish TCP connection with MOEX Market Data Multicast.

2. Send FIX message Logon(A) with sequence numder 1 to server. After successful authorization server sends the FAST - encoded Logon(A)
message.

3. Send Market Data Request (V) message with:

a. Range of sequence numbers - ApplBegSeqNum(1182) and ApplEndSeqNum (1183) tags.
If request is correct, server sends FAST messages according to requested sequence numbers.
If request is incorrect, server sends FAST Logout (5) message with reject reason.
After server responses, the connection is closed.

Server will process only first user request, second and others will be ignored. If the server does not receive Market Data Request within
an established timeout interval after logon, the connection is closed.

Recovery channel has 1 second incoming request timeout.

3.4. Message sequence reset

Every 24 hours, the Fast Gate is being cleaned up from the last day trading session messages, and its message sequences are being reset.
When the message sequences have been reset, a message ‘Sequence Reset' with a new value in the field 'NewSeqNo' will be transmitted
in the (incr) streams. Upon receiving the message 'Sequence Reset', the client is to set the message number value to that transmitted in
the message 'NewSegNo', and reset 'RptSeq’ numbers.

Below is the break time schedule for Fast Gate. In the end of each break time, message sequence numbers will be reset:
» OTC Monitor - 0:00 AM (Moscow Time) till 00:02 AM (Moscow Time);
 Test environment for OTC Monitor - 0:00 AM (Moscow Time) till 00:02 AM (Moscow Time);

For all the main (incr) streams the message sequence number will be set to 1, and 'RptSeq' number will be set to 1. Also, the message
pair 'Sequence Reset' will be transmitted:

» Sequence Reset: MsgSeqNum=N NewSegqNo[36]=1

12

FAST protocol specification (OTC-monitor) 23.01.2023

» Sequence Reset: MsgSeqgNum=N NewSegNo[36]=N

After those messages have been transmitted, the FAST-messages containing trading data of the last evening trading session, with numbers
from 1 till N-1 inclusive, will become available through the TCP Recovery service. The initial '‘RptSeq’ number value can be obtained with
one of the following methods:

* request and process messages with numbers from 1 till N-1 available through the TCP Recovery service;

» connect to Recovery (UDP) stream, in accordance with information provided in section 3.3.1 Recovery missing data using Recovery
streams (UDP).

3.5. Message templates

There are three certain message templates used for OTC-monitor data:
» OtcMonitorincrementalRefreshMessage (id="33") - see sec. 3.5.1
» OtcMonitorSnapshotMessage (id="34") - see sec. 3.5.2

* OtcMonitorSecurityDefinition (id="35") - see sec. 3.5.3

3.5.1. OtcMonitorincrementalRefreshMessage

This template is used for data refresh purpose. Also, it is used by the service TCP Recovery.

<template name="OtcMonitorIncrementalRefreshMessage" id="33">
<string name="ApplVerID" id="1128">
<constant value="9"/>
</string>
<string name="MessageType" id="35">
<constant value="X"/>
</string>
<string name="SenderCompID" id="49">
<constant value="MOEX"/>
</string>
<uInt32 name="MsgSeqNum" id="34"/>
<uInt64 name="SendingTime" id="52"/>
<uInt32 name="LastFragment" id="893" presence="optional"/>
<sequence name="MDEntries">
<length name="NoMDEntries" id="268"/>
<uInt32 name="MDUpdateAction" id="279"/>
<string name="MDEntryType" id="269"/>
<string name="Symbol" id="55"/>
<string name="SecurityGroup" id="1151"/>
<uInt32 name="RptSeq" id="83"/>
<int64 name="MDEntryID" id="278"/>
<string name="MDEntryPx" id="270"/>
<int64 name="MDEntrySize" id="271"/>
<uInt32 name="MDEntryDate" id="272" presence="optional"/>
<uInt64 name="MDEntryTime" id="273"/>
<string name="Currency" id="15"/>
<uInt64 name="Revision" id="20018" presence="optional"/>
<string name="OrderSide" id="10504"/>
<string name="SettlCurrency" id="120"/>
<string name="CFICode" id="461"/>
<string name="TradeVolume" id="1020"/>
</sequence>
</template>

3.5.2. OtcMonitorSnapshotMessage
This template is used for distributing snapshots.

<template name="OtcMonitorSnapshotMessage" id="34">

<string name="ApplVerID" id="1128">
<constant value="9"/>

</string>

<string name="MessageType" id="35">
<constant value="W"/>

</string>

<string name="SenderCompID" id="49">
<constant value="MOEX"/>

</string>

13

FAST protocol specification (OTC-monitor) 23.01.2023

<uInt32 name="MsgSegNum" id="34"/>
<uInt64 name="SendingTime" id="52"/>
<uInt32 name="LastFragment" id="893" presence="optional'"/>
<uInt32 name="RptSeq" id="83"/>
<uInt32 name="TotNumReports" id="911"/>
<uInt32 name="LastMsgSegNumProcessed" id="369"/>
<string name="Symbol" id="55"/>
<string name="SecurityGroup" id="1151"/>
<sequence name="MDEntries'">
<length name="NoMDEntries" id="268"/>
<uInt32 name="MDUpdateAction" id="279"/>
<string name="MDEntryType" id="269"/>
<int64 name="MDEntryID" id="278"/>
<string name="MDEntryPx" id="270"/>
<uInt32 name="MDEntryDate" id="272" presence="optional'"/>
<uInt64 name="MDEntryTime" id="273"/>
<int64 name="MDEntrySize" id="271"/>
<string name="Currency" id="15"/>
<string name="OrderSide" id="10504"/>
<string name="SettlCurrency" id="120"/>
<string name="CFICode" id="461"/>
<string name="TradeVolume" id="1020"/>
</sequence>
</template>

3.5.3. OtcMonitorSecurityDefinition
This template is used for distributing information about the instruments.

<template name="OtcMonitorSecurityDefinition" id="35">
<string name="ApplVerID" id="1128">
<constant value="9"/>
</string>
<string name="MessageType" id="35">
<constant value="d"/>
</string>
<string name="SenderCompID" id="49">
<constant value="MOEX"/>
</string>
<uInt32 name="MsgSegqNum" id="34"/>
<uInt64 name="SendingTime" id="52"/>
<!-- Total count of SecurityDefinition messages -->
<uInt32 name="TotNumReports" id="911"/>
<string name="Symbol" id="55"/>
<string name="SecurityDesc" id="107" presence="optional" charset="unicode"/>
<!-- Unique among all instruments; primary key -->
<uInt64 name="SecurityID" id="48"/>
<uInt32 name="SecurityIDSource" id="22">
<constant value="8"/>
</uInt32>
<string name="SecurityAltID" id="455"/>
<string name="SecurityAltIDSource" id="456"/>
<string name="CFICode" id="461"/>
<string name="MarketID" id="1301">
<constant value="MOEX"/>
</string>
<string name="MarketSegmentID" id="1300"/>
<sequence name="MDFeedTypes">
<length name="NoMDFeedTypes" id="1141"/>
<string name="MDFeedType" id="1022"/>
<uInt32 name="MarketDepth" id="264" presence="optional"/>
<uInt32 name="MDBookType" id="1021" presence="optional"/>
</sequence>
<sequence name="InstrumentAttributes">
<length name="NoInstrAttrib" id="870"/>
<int32 name="InstrAttribType" id="871"/>
<string name="InstrAttribValue" id="872" charset="unicode"/>
</sequence>
<decimal name="UnderlyingQty" id="879" presence="optional"/>
<string name="UnderlyingCurrency" id="318" presence="optional"/>
<string name="InList" id="20052"/>
</template>

14

FAST protocol specification (OTC-monitor)

23.01.2023

4. FIX protocol message specifications

The protocol message specifications description below is based on the standard FIX protocol specification v. 5.0 SP2 (https://
www.fixtrading.org/standards/fix-5-0-sp-2). It is recommended for users to read some general information about the protocol before com-

mencing with this specification.

Each field is described below:

» Tag — the unique field ID, used for generating a FIX message.

 Field — the field name, not used for generating FIX messages and described for your reference only.

* Mandatory — a field attribute: specifies whether the field in message is mandatory or optional.

¢ Y - mandatory field;

* N - optional field;

* C - mandatory, if meets the condition (see 'Details’).

« Details — detailed description of the field.

« Allowable values - additional limitations.

The "*" symbol - flag of difference from the standard FIX protocol.

4.1. Field groups

Many messages contain the same fields. For example, the 'Standard Message Header' group fields contain some administrative information
and are mandatory for every message.

4.1.1. Standard Message Header

The standard header, mandatory for every message.

Tag Field Manda- Details Available values
tory
34 MsgSegNum Y Message sequence number
35 MsgType Y Message type
49 SenderComplD Y Message sender ID * 'MOEX' - Moscow Exchange
* 'ETSC' - Kazakhstan Exchange (ETS)
52 SendingTime Y Message sending time
1128 ApplVerlD Y FIX protocol version ID "9" (FIX50SP2)

4.2. Session layer messages

4.2.1. Logon (A)

A FIX message which is used to initiate a session establishment to the service TCP Recovery.

Tag Field Mandatory Details
BeginString Y Allowable values: 'FIX.4.4' and 'FIXT.1.1'.
BodyLength Message length.

35 MsgType Y ‘A

553 Username N Any string
554 Password N Any string
10 CheckSum Y Checksum.

A FAST message which is used to confirm a session establishment to the service TCP Recovery.

Tag

\ Field

Mandatory

Details

<Standard Message Header>

Y Message type 'A'.

4.2.2. Logout (5)

A FIX message which is used to initiate a session closure with the service TCP Recovery.

15

https://www.fixtrading.org/standards/fix-5-0-sp-2
https://www.fixtrading.org/standards/fix-5-0-sp-2

FAST protocol specification (OTC-monitor) 23.01.2023

Tag Field Mandatory Details
BeginString Y Allowable values: 'FIX.4.4' and 'FIXT.1.1".
BodyLength Y Message length.

35 MsgType Y ‘5
10 CheckSum Y Checksum.

A FAST message which is used to confirm a session closure with the service TCP Recovery.

Tag

Field

Mandatory

Details

<Standard

Message Header>

Y

Message type '5'.

58

Text

N

Reason for ending the session. In case of refusal to process the request, a description
of the error is transmitted in the field. If the request is successfully processed, 'nullValue'
is transmitted.

4.2.3. Heartbeat (0)

The message HeartBeat is sent by FastGate when there were no messages sent in the stream within a 30 seconds time interval.

Tag ‘ Field Mandatory Details
<Standard Message Header> Y Message type '0'.
4.2.4. Sequence Reset (4)
Tag ‘ Field Mandatory Details
<Standard Message Header> Y Message type '4'.
36 ‘ NewSegNo Y New sequence number.
4.3. Business logic layer messages
This section describes messages of OTC-monitor streams.
The following FIX messages are supported:
« Security Definition — Information on instrument.
« Market Data Request - Missed data request.
« Market Data - Snapshot / Full Refresh — Data snapshot.
* Market Data - Incremental Refresh — Data refresh.
4.3.1. Security Definition (d)
Information on instrument.
Tag ‘ Field Mandatory Details
<Standard Message Header> Y Message type ‘d’
1301 Marketld* Y Exchange MIC: 'MOEX' - Moscow Exchange
1300 MarketSegmentld* Y 'Q' - OTC-trades
48 Securityld Y Instrument unique 1D
22 SecurityldSource Y ‘8" - Exchange Symbol
55 Symbol Y Security code
107 SecurityDesc N Name of the issuer of the security
455 SecurityAltID* Y Instrument symbol code
456 SecurityAltiIDSource* Y Class for SecurityAltID (455):
* '4' - ISIN number
461 CFICode Financial instrument class according to ISO-10962.
870 NolnstrAttrib Y =6

16

FAST protocol specification (OTC-monitor)

23.01.2023

Tag Field Mandatory Details
=>871 InstrAttribType Y =204
=>872 |InstrAttribValue Y State registration number
=871 InstrAttribType Y =200
=>872 |InstrAttribValue Y Total number of securities by issuer, in units.
=> 871 InstrAttribType Y =205
=> 872 InstrAttribValue Y Full name of the issuer of the security or other person liable under the se-
curity (full name of the management company)
=> 871 InstrAttribType Y =206
=> 872 InstrAttribValue Y Name of the mutual investment fund
=>871 |InstrAttribType Y =207
=> 872 InstrAttribValue Y Type, category of security
=>871 |InstrAttribType Y =208
=> 872 InstrAttribValue Y Kind of security
879 UnderlyingQty N Security nominal value
318 UnderlyingCurrency N Code of currency of the security nominal value
20052 InList Y Allowable values:
« Y - the security is included in the quotation list of the Exchange;
* N - the security is not included in the quotation list of the Exchange, or
is included in the quotation list of the Exchange, but is a security of a
foreign issuer, the listing of which was carried out without concluding an
agreement with the issuer

* - differs from the standard FIX protocol.

4.3.2. Market Data Request (V)

A FIX message which is used to request missing data in the session to the service TCP Recovery.

Tag Field Mandatory Details

8 BeginString Y Allowable values:

* FIX.4.4
* FIXT.1.1

9 BodyLength Y Message length

35 MsgType Y V"

262 MDReqld Y Request ID

1182 ApplBegSeqgNum N Sequence number of the first requested message.

1183 ApplEndSegqNum N Sequence number of the last requested message. If a single message is
requested, then ApplBegSeqNum(1182)=ApplEndSegNum(1183). If all
messages are requested (no more than total messages sent) after a par-
ticular message number, then ApplEndSeqNum(1183)=0(infinity).

10 CheckSum Y Checksum

4.3.3. Market Data - Snapshot / Full Refresh (W)

Data snapshot.

Tag ‘ Field Mandatory Details
<Standard Message Header> Y Message type 'W'
893 LastFragment N Indicates the last message in the message group for the instrument.

Allowable values:

* 0 - not the last message

* 1 - the last message

17

FAST protocol specification (OTC-monitor) 23.01.2023

Tag Field Mandatory Details
The field is not mandatory. If a message does not contain this field, it
means that the packet with message has not been fragmented
83 RptSeq Y The 'RptSeq' number of the last incremental update included in the current
market data snapshot for instrument
911 TotNumReports The number of messages in the snapshot, which have 'LastFragment '=1
369 LastMsgSegNumProcessed Y The 'MsgSegNum' of the last message sent into incremental feed at the
time of the current snapshot generation
55 Symbol Y Security code
1151 SecurityGroup Y ='0TC
268 NoMDEntries Y Number of ‘MDEntry' records in the current message
=>279 MDUpdateAction Y Incremental refresh type:
* '0'- New
» '1'- Change
» '2'- Delete
=>269 MDEntryType Y Record type: '2' - Trade
=>278 MDEntryID Y Registration identifier of the trade assigned by the OTC-monitor system
=>270 MDEntryPx Y The price of one security
=>15 Currency Y Currency code. Always = "RUB"
=>271 MDEntrySize Y Quantity of securities
=>272 MDEntryDate N Trade date
=>273 MDEntryTime Y Trade time
=>10504 | OrderSide Y Trade direction (Buy '‘B'/ Sell 'S")
Allowable values:
* ‘1’ — buy order (Buy);
o ‘2" —sell order (Sell).
=>120 SettlCurrency Y Currency of monetary obligation
=>461 CFICode Y CFI code of the security with which the trade was made
=>1020 |TradeVolume Y Trade volume, rub.

* - differs from the standard FIX protocol.

4.3.4. Market Data - Incremental Refresh (X)

Data refresh.
Tag ‘ Mone Hanwuuue OnucaHve

<Standard Message Header> Y Message type ‘X'

893 LastFragment N Indicates the last message in the message group for the instrument.
Allowable values:
* 0 - not the last message
« 1 —the last message
The field is not mandatory. If a message does not contain this field, it
means that the packet with message has not been fragmented

268 NoMDEntries Y Number of 'MDEntry' records in the current message

=>279 MDUpdateAction Y Incremental refresh type:
¢ '0'- New
¢ '1'- Change
e '2'- Delete

=>269 MDEntryType Y Record type: '2' - Trade

18

FAST protocol specification (OTC-monitor)

23.01.2023

Tag Mone Hanuuwne Onucaxve

=>55 Symbol Y Security code

=>1151 | SecurityGroup Y ='0TC'

=>83 RptSeq Y Incremental refresh sequence number

=>278 MDEntryID Y Registration ID of the trade that was deleted or changed. When the re-
port about trade is changed, it retains the same Registration ID that was
assigned by the OTC Monitor system when adding the trade report.

=>270 MDEntryPx Y The price of one security

=>271 MDEntrySize Y Quantity of securities

=>272 MDEntryDate N Trade date

=>273 MDEntryTime Y Trade time

=>15 Currency Y Currency code. Always = 'RUB'

=>20018 | Revision N Service field of the replication subsystem

=>10504 |OrderSide Y Trade direction (Buy 'B'/ Sell 'S").
Allowable values:
e ‘1'— buy order (Buy);
e ‘2" —sell order (Sell).

=>120 SettlCurrency Y Currency of monetary obligation

=>461 CFICode Y CFI code of the security with which the trade was made

=>1020 |TradeVolume Y Trade volume, rub.

* - differs from the standard FIX protocol.

19

FAST protocol specification (OTC-monitor) 23.01.2023

5. TCP Recovery (Historical Replay) service limitations

The following limitations are applied to the TCP Recovery service for streams OTC-TRADES, ORDERS-LOG in order to lower the load:

Parameter Value Details

Maximum active connections, per market, per in-|2 You can establish no more than indicated number active TCP con-

stance, per IP address nection from single IP address. An attempt to make more connec-
tions will be rejected

Maximum connections count, per market, per instance, | 1000 You can make no more than indicated number of tcp connections per

per day, per IP address IP address per day. Extra connection attempts will be rejected

Maximum number of messages to request 1000 TCP replay request is rejected if a number of requested messages
is greater than indicated value

Marketdata request timeout, seconds 1 Connection is terminated with logout message if marketdata request

is not received within indicated number of seconds since logon mes-
sage. TCP session is terminated if no confirming logout is received
after server-side logout.

20

